摘要
高分子材料在汽车领域的用途越来越广,研究高分子材料老化特性具有重要意义。同时,高分子材料综合老化试验成本高昂且不具备普适性,而高分子材料综合老化指标长周期预测的关键模型目前国内外鲜有研究,本工作利用聚丙烯(PP)和苯乙烯、丙烯腈及丙烯酸橡胶等三元聚合物(ASA)两种塑料25 d阳光模拟试验数据,基于塑料板材老化行为分析以及环境对PP及ASA塑料的作用机制,探究PP及ASA塑料老化性能之间的关联性。通过主成分分析法与逼近理想解排序法,将多个老化指标降维,并转化为综合老化值,对比PP及ASA塑料的抗老化性能高低。通过最小二乘法对PP及ASA塑料进行老化性能预测,并将预测PP及ASA塑料在第30 d的老化值与实测值进行对比。结果表明:硬度、拉伸强度、弯曲强度预测值与实测值具有较高的重复性,通过逼近理想解排序法计算得出ASA塑料的老化性能优于PP塑料,预测PP及ASA两种塑料在第30 d的老化值与实测值误差在2%以内,大大节省试验成本。
The use of polymer materials in the automotive field is becoming increasingly widespread,and studying the aging characteristics of polymer materials is of great significance.However,the cost of comprehensive aging testing for polymer materials is high and does not have universality.Currently,there is little research on the key model for long-term prediction of comprehensive aging indicators for polymer materials at home and abroad.This article uses 25 d sunlight simulation test data of two plastics,PP and ASA,based on the analysis of plastic sheet aging behavior and the mechanism of environmental effects on PP and ASA plastics,Explore the correlation between the aging properties of PP and ASA plastics.Through principal component analysis and approximate ideal solution ranking,several aging indexes are reduced into comprehensive aging values,and the aging resistance of PP and ASA plastics is compared.By using the least squares method,the aging curves of PP and ASA plastics with different properties under different sunlight simulation durations were predicted,and the aging values of PP and ASA plastics on the 30 d were compared with the measured values.The results show that the hardness,tensile strength,and bending strength have high repeatability.The aging performance of ASA plastic calculated by the approximate ideal solution ranking method is better than that of PP plastic.The predicted aging values of PP and ASA plastic on the 30 d are within 2%of the measured values,which greatly saves testing costs.
作者
王源
张志松
马欣桐
孙建
苏连盛
WANG Yuan;ZHANG Zhisong;MA Xintong;SUN Jian;SU Liansheng(CATARC Component Technology(Tianjin)Co.,Ltd.,Tianjin 300300,China;Ping An Bank Co.,Ltd.,Tianjin Branch,Tianjin 300193,China;SAIC Volkswagen Automotive Co.,Ltd.,Shanghai 201805,China;FAW Jiefang Group Co.,Ltd.,Changchun 130016,China)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2024年第S01期592-597,共6页
Materials Reports
关键词
关联性
老化
综合评价
预测
correlation
aging characteristics
comprehensive evaluation
prediction