摘要
Let A be a Banach algebra with unit e and a,b,c∈A,Mc=(a c 0 b)∈M_(2)(A).The concepts of left and right generalized Drazin invertible of elements in a Banach algebra are proposed.A generalized Drazin spectrum of is defined byσ_(gD)(α)={λ∈C:α-λe is not generalized Drazin invertible}.It is shown thatσ_(gD)(a)∪σ_(gD)(b)=σ_(gD)(M_(C))∪W_(2),where W_(g) is a union of certain holes σ_(gD) and W_(g)■σ_(gD)(a)∩σ_(gD)(b),or more finely.In addition,some properties of generalized Drazin spectrum of elements in a Banach algebra are studied.