期刊文献+

Generalized Drazin spectrum of upper triangular matrices in Banach algebras

原文传递
导出
摘要 Let A be a Banach algebra with unit e and a,b,c∈A,Mc=(a c 0 b)∈M_(2)(A).The concepts of left and right generalized Drazin invertible of elements in a Banach algebra are proposed.A generalized Drazin spectrum of is defined byσ_(gD)(α)={λ∈C:α-λe is not generalized Drazin invertible}.It is shown thatσ_(gD)(a)∪σ_(gD)(b)=σ_(gD)(M_(C))∪W_(2),where W_(g) is a union of certain holes σ_(gD) and W_(g)■σ_(gD)(a)∩σ_(gD)(b),or more finely.In addition,some properties of generalized Drazin spectrum of elements in a Banach algebra are studied.
出处 《Frontiers of Mathematics in China》 CSCD 2023年第6期431-440,共10页 中国高等学校学术文摘·数学(英文)
  • 相关文献

参考文献3

二级参考文献27

  • 1Xiao Hong CAO,Mao Zheng GUO,Bin MENG.Semi-Fredholm Spectrum and Weyl's Theorem for Operator Matrices[J].Acta Mathematica Sinica,English Series,2006,22(1):169-178. 被引量:37
  • 2Han J K,Lee H Y,Lee W Y.Invertible completions of 2×2upper triangular operator matrices[J].Proc AmerMath Soc,2000,128:119-123.
  • 3Lee W Y.Weyl spectra of operator matrices[J].Proc A-mer Math Soc,2001,129:131-138.
  • 4Du H K,Pan J.Perturbation of spectrums of 2×2opera-tor matrices[J].Proc Amer Math Soc,1994,121:761-766.
  • 5Djordjevic D S.Perturbations of spectra of operator matri-ces[J].J Operator Theory,2002,48:467-486.
  • 6Barraa M,Boumazgour M.A note on the spectrum of anupper triangular operator matrix[J].Proc Amer MathSoc,2003,131:3083-3088.
  • 7Li Y,Sun X H,Du H K.Intersections of the left and rightessential spectra of 2×2upper triangular operator matri-ces[J].Bull London Math Soc,2004,36:811-819.
  • 8Benhida C,Zerouali E H,Zguitti H.Spectra of upper tri-angular operator matrices[J].Proc Amer Math Soc,2005,133:3013-3020.
  • 9Cao X H,Guo M Z,Meng B.A note on Weyl's theorem[J].Proc Amer Math Soc,2005,133:2977-2984.
  • 10Cao X H,Guo M Z,Meng B.Weyl's theorem for uppertriangular operator matrices[J].Linear Algebra and itsApplications,2005,402:61-73.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部