期刊文献+

基于深度学习的语音情感识别方法研究

Research on Speech Emotion Recognition Method Based on Deep Learning
下载PDF
导出
摘要 为提高情感识别任务的准确性和效率,探讨了基于深度学习的语音情感识别方法。首先,构建一个综合的深度学习框架,用于处理语音情感识别任务。其次,深入研究一维卷积神经网络(Convolutional Neural Networks,CNN)在语音情感分析中的应用,探讨其在特征提取和情感分类中的优势。最后,进行实验分析。实验结果表明,该方法能够有效识别语音情感,具有一定的稳定性和可靠性。 To improve the accuracy and efficiency of emotion recognition tasks,this article explores speech emotion recognition methods based on deep learning.Firstly,construct a comprehensive deep learning framework for processing speech emotion recognition tasks.Secondly,conduct in-depth research on the application of one-dimensional Convolutional Neural Networks(CNN)in speech sentiment analysis,and explore its advantages in feature extraction and sentiment classification.Finally,conduct experimental analysis.The experimental results show that this method can effectively recognize speech emotions and has a certain degree of stability and reliability.
作者 郭晓琳 GUO Xiaoin(Yunnan Economics Trade and Foreign Affairs College,Kunming 650000,China)
出处 《电声技术》 2024年第4期48-50,共3页 Audio Engineering
关键词 深度学习 卷积神经网络(CNN) 语音分析 情感识别 deep learning Convolutional Neural Networks(CNN) speech analysis emotional recognition
  • 相关文献

参考文献10

二级参考文献124

  • 1谢波,陈岭,陈根才,陈纯.普通话语音情感识别的特征选择技术[J].浙江大学学报(工学版),2007,41(11):1816-1822. 被引量:13
  • 2韩文静,李海峰,韩纪庆.基于长短时特征融合的语音情感识别方法[J].清华大学学报(自然科学版),2008,48(S1):708-714. 被引量:20
  • 3张立华,杨莹春.情感语音变化规律的特征分析[J].清华大学学报(自然科学版),2008,48(S1):652-657. 被引量:14
  • 4蒋丹宁,蔡莲红.基于语音声学特征的情感信息识别[J].清华大学学报(自然科学版),2006,46(1):86-89. 被引量:38
  • 5林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 6Huang Xuedong, Acero A. Spoken Language Processing: A Guide to Theory, Algorithm and System Development[M]. New Jersey: Prentice-Hall, 2001.
  • 7Nordholm S, Slow Yong Low. Speech Signal Extraction Utilizing PCA-ICA Algorithm with a Non-uniform Spacing Microphone Array[C]//Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse, France: [s. n.], 2006: 965.
  • 8Tsuneo N. Feature Extraction for Speech Recognition Based on Ohogonal Acoustic-feature Panes and LDA[C]//Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing. Phoenix, AZ, USA: [s. n.], 1999: 421-424.
  • 9Aubert X L. An Overview of Decoding Techniques for Large Vocabulary Continuous Speech Recognition[J]. Computer Speech and Language, 2002, 16(1): 89-114.
  • 10Minsky M. The society of mind [M]. New York, USA, Simon and Schuster, 1988.

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部