期刊文献+

基于随机森林的喷水推进装置控制回路故障检测方法

Fault Detection Method for Control Loop of Water Jet Propulsion Device Based on Random Forest
下载PDF
导出
摘要 为了及时准确发现喷水推进装置发生的故障,提升其运行的安全性,提出一种数据驱动的故障检测方法。将随机森林引入喷水推进装置故障检测领域,解决当前闭环控制回路故障检测缺乏自动化、智能化手段的问题;采用特征重要性度量策略对用于构建随机森林模型的特征参数进行评估,在满足故障检测精度的需求下降低特征参数维度,提升故障检测的实时性;基于网格搜索机制对随机森林的超参数进行优化,提升故障检测的准确率。通过基于AMESim的仿真试验和基于NICompact RIO的实物试验综合验证所提方法的有效性,结果表明该方法能有效提升喷水推进装置的可靠性,具有较强的工程应用价值。 In order to timely and accurately detect faults in the water jet propulsion system and improve its operational safety,a data-driven fault detection method is proposed.Random forest is introduced into the field of water jet propulsion device fault detection to solve the problem of lack of automation and intelligent means in current closed-loop control circuit fault detection.The feature importance measurement strategy is adopted to evaluate the feature parameters used to construct the random forest model,reduce the feature parameter dimensionality while meeting the requirements for fault detection accuracy,and improve the real-time performance of fault detection.Based on the grid search mechanism,the hyper parameters of random forests are optimized,and the accuracy of fault detection is improved.The effectiveness of the proposed method is comprehensively verified by simulation experiments based on AMESim and physical experiments based on NI CompactRIO.The experimental results indicate that the proposed method can effectively improve the reliability of waterjet propulsion devices and has strong engineering value.
作者 杨诚 李钊阳 吴美熹 黄宇翔 YANG Cheng;LI Zhaoyang;WU Meixi;HUANG Yuxiang(China Institute of Marine Technology and Economy,Beijing 100081,China;School of Electronic and Information Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《船舶工程》 CSCD 北大核心 2024年第3期63-72,共10页 Ship Engineering
关键词 随机森林 喷水推进装置 控制回路 安全性 故障检测 random forest water jet propulsion device control loop safety fault detection
  • 相关文献

参考文献8

二级参考文献42

  • 1印欣运,何永勇,彭志科,褚福磊.小波熵及其在状态趋势分析中的应用[J].振动工程学报,2004,17(2):165-169. 被引量:49
  • 2陈章位,路甬祥,傅周东.液压设备状态监测和故障诊断技术[J].液压与气动,1995,19(2):3-7. 被引量:49
  • 3Davies S, Russl S. NP completeness of searches for smallest possible feature sets[C]//Proceedings of the AAAI Fall Symposiums on Relevance, Menlo Park, 1994:37-39.
  • 4Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
  • 5Strobl Carolin, Boulesteix Anne-Laure, Kneib Thomas, et al. Conditional variable importance for random forests[J]. BMC Bioinformatics, 2008, 9 (1) : 1-11.
  • 6Reif David M, Motsinger Alison A, McKinney Brett A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]//IEEE Symposium on Computational In- telligence and Bioinformatics and Computational Bi- ology, 2006: 171-178.
  • 7Mohammed Khalilia, Sounak Chakraborty, Mihail Popescu. Predicting disease risks from highly im- balanced data using random forese[J]. BMC Medi- cal Informaties and Decision Making, 2011, 11(7): 51-58.
  • 8Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests[J]. Pattern Recognition, 2011, 44 (2): 330-349.
  • 9Inza I, Larranaga P, Blanco R. Filter versus wrap- per gene selection approaches in DNA microarray domains [J]. Artificial Intelligence in Medicine, 2004, 31(2): 91-103.
  • 10程玉波,车建国,杨作宾,李哲.复杂电磁环境下防空兵武器装备综合保障研究[J].国防科技,2008,29(2):30-33. 被引量:4

共引文献517

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部