期刊文献+

非均匀结构网格上MUSCL和WENO格式的精度

Accuracy of MUSCL and WENO Schemes on Non-Uniform Structured Meshes
下载PDF
导出
摘要 基于一维均匀网格条件下构造的差分格式,在实际应用中须推广到非均匀或者曲线网格上,坐标变换过程引入几何诱导误差。目前常用收敛解误差随着网格细化变化的精度测试方法评估差分格式的精度。在二维柱坐标均匀网格上,采用1阶迎风、2阶MUSCL和5阶WENO计算流场参数为常数的自由流问题,按照精度测试方法比较收敛曲线斜率,发现1阶迎风的网格收敛精度是2阶的,5阶WENO的网格收敛精度不到1阶。理论分析表明,这种精度测试方法与差分格式精度定义不等价,而且所采用的数据无法反映差分格式的固有缺陷,因此,不能用来作为差分格式精度评价指标。很多研究WENO的文献经常模拟双Mach反射问题、二维Riemann问题等经典算例,把接触间断是否演变成不稳定涡结构作为特征,理论上可以证明涡结构是非物理现象,因此用是否出现涡结构作为算法高精度的论据并不合适。 The difference schemes constructed on the basis of one-dimensional uniform grids must be extended to non-uniform or curvilinear grids in practical applications,and the coordinate transformation process introduces geometry-induced errors.The accuracy of the difference schemes is evaluated by the accuracy test,in which the convergence solution error varies with the grid refinement.In this paper,the first-order upwind scheme,the second-order MUSCL scheme and the fifth-order WENO scheme were used to calculate the uniform free flow problem with constant flow parameters on a two-dimensional cylindrical coordinate uniform grid system,and the slope of the convergence curve was compared according to the accuracy test method,and it was found that the grid convergence accuracy of the first-order upwind scheme was second order,and the grid convergence accuracy of the fifth-order WENO scheme was less than first order.Theoretical analysis shows that this accuracy test method is not equivalent to the definition of difference scheme accuracy,and the data used cannot reflect the inherent defects of the difference scheme.Therefore,it cannot be used as a criterion for evaluating the accuracy of the difference scheme.Many studies of WENO schemes often simulate benchmarks such as the double Mach reflection problem and the two-dimensional Riemann problem,and use whether the contact discontinuity develops into an unstable vortex structure as a characteristic of the algorithm with high accuracy,which can be theoretically proved to be a non-physical phenomenon,so it is not appropriate to use whether a vortex structure appears as an argument for the algorithm′s high accuracy.
作者 刘君 刘瑜 LIU Jun;LIU Yu(Faculty of Mechanical Engineering&Mechanics,Ningbo University,Ningbo 315211,China)
出处 《气体物理》 2024年第3期66-76,共11页 Physics of Gases
基金 宁波市科技创新2025重大项目(2022Z186)。
关键词 差分格式 精度测试 结构网格 WENO MUSCL finite difference scheme accuracy test structured mesh WENO MUSCL
  • 相关文献

参考文献11

二级参考文献51

  • 1Philip Roe.My Way: A Computational Autobiography[J].Communications on Applied Mathematics and Computation,2020,2(3):321-340. 被引量:1
  • 2杨云军,崔尔杰,周伟江.细长三角翼滚转/侧滑耦合运动的数值研究[J].航空学报,2007,28(1):14-19. 被引量:16
  • 3杨云军,崔尔杰,周伟江.细长三角翼摇滚运动数值研究[J].空气动力学学报,2007,25(1):34-44. 被引量:5
  • 4Metha U B.Guide to credible computational fluid dynamics simulations.AIAA-95-2225,1995
  • 5Roache P J.Verification of codes and calculations.AIAA Journal,1998,36(5):696~702
  • 6Schlesinger S.Terminology for model credibility.Simulation,1979,32(3):103~104
  • 7Harten A,Engquist B,Osher S,et al.Uniformly high-order accurate essentially non-oscillatory shock-capturing schemes Ⅲ.J of Comp Phys,1987,71:231~323
  • 8Shu C,Osher S.Efficient implementation of essentially nonoscillatory shock-capturing schemes.J of Comp Phys,1988,77:439~471
  • 9Roache P J,Knupp P,Steinberg S,et al.Experience with benchmark test cases for groundwater flow.In:Celik I,Freitas C J,eds.Benchmark Test Cases for Computational Fluid Dynamics,FED-vol.93.New York:The American Society of Mechanical Engineers,1990.49~56
  • 10Roache P J.Code verification by the method of manufactured solutions.ASME Journal of Fluids Engineering,2002,114(1):4~10

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部