摘要
本文研究一类具有记忆项和非线性强阻尼项的波动方程.利用Faedo-Galerkin逼近方法, Lions-Aubin紧性定理证明了该问题整体弱解的存在唯一性;然后,利用常用的不等式证明了系统有界吸收集的存在性,通过验证半群的紧性得到系统整体吸引子的存在性.
This paper we considered the wave equation with memory and nonlinear strong damping.The existence and uniqueness of the global weak solution is proved by using the Faedo-Galerkin approximation method and the Lions-Aubin compactness theorem.Then,the existence of the bounded absorbing set of the semigroup is proved by some inequalities,and the existence of the global attractor of the system is obtained by proving the compactness of the semigroup.
作者
张素丽
ZHANG Suli(College of Mathematics and Statistics,Taiyuan Normal University,Jinzhong 030619,China)
出处
《应用数学》
北大核心
2024年第3期718-727,共10页
Mathematica Applicata
基金
国家自然科学基金(11872264)
智能优化计算与区块链技术山西省重点实验室建设项目资助。