摘要
在本文中,我们证明在s>1/2的Shubin空间Qs(R)中带调和振荡算子的非线性热方程Cauchy问题解的整体存在性和Gelfand-Shilov光滑性效应.这是在已有工作的基础上对正则性的一个改进的新论证.
In this work,we show the global existence and Gelfand-Shilov smoothing effect of the solution to the Cauchy problem of the nonlinear heat equation associated to Harmonic oscillators with the initial data in the Shubin class Q s(R)where s>1/2.We give an improved new argument in the regularity property on the basis of the work[3].
作者
田媛媛
李浩光
TIAN Yuanyuan;LI Haoguang(School of Mathematics and Statistics,South-Central Minzu University,Wuhan 430074,China)
出处
《应用数学》
北大核心
2024年第3期739-748,共10页
Mathematica Applicata
基金
the Natural Science Foundation of Hubei province,China(2022CFB444)。