期刊文献+

机器学习辅助的WC-Co硬质合金硬度预测

Hardness prediction of WC-Co cemented carbide based on machine learning model
下载PDF
导出
摘要 硬度是硬质合金材料的一项典型代表性能,受多种因素的影响且各因素间常存在关联关系.本文旨在获得WC-Co硬质合金硬度的关键影响因素并实现硬度的高通量预测.建立了以硬质合金硬度为目标变量,以原料成分、烧结工艺和烧结体表征信息为特征的数据集;通过对特征的皮尔逊相关系数和SHAP分析,发现WC晶粒尺寸和Co含量对硬质合金硬度的影响最为显著.基于机器学习的支持向量机、多项式回归、梯度提升决策树、随机森林等算法,分别构建了硬质合金硬度预测模型.采用10折交叉验证方法对模型进行定量评估,结果表明梯度提升决策树算法模型具有最高的精度和较强的泛化能力,是最适合硬质合金硬度预测的机器学习方法.基于优选模型的高通量预测数据,采用多项式回归算法确定了硬质合金硬度与Co含量和WC晶粒尺寸之间的定量关系,预测准确率达到0.946.本研究为硬质合金性能的准确高效预测提供了数据驱动方法,可为高性能硬质合金材料的设计研发提供重要参考. The hardness of cemented carbides is a fundamental property that plays a significant role in their design,preparation,and application evaluation.This study aims to identify the critical factors affecting the hardness of WC-Co cemented carbides and develop a high-throughput predictive model for hardness.A dataset consisting of raw material composition,sintering parameters and characterization results of cemented carbides is constructed in which the hardness of cemented carbide is set as the target variable.By analyzing the Pearson correlation coefficient,Shapley additive explanations(SHAP)results,WC grain size and Co content are determined to be the key characteristics influencing the hardness of cemented carbide.Subsequently,machine learning models such as support vector regression(SVR),polynomial regression(PR),gradient boosting decision tree(GBDT),and random forest(RF)are optimized to construct prediction models for hardness.Evaluations using 10-fold cross-validation demonstrate that the GBDT algorithm model exhibits the highest accuracy and strong generalization capability,making it most suitable for predicting and analyzing the hardness of cemented carbides.Based on predictions from GBDT algorithm model,PR algorithm model is established to achieve highprecision interpretable prediction of the hardness of cemented carbides.As a result,a quantitative relationship between hardness and Co content and WC grain size is obtained,demonstrating that reducing grain size and Co content is the key to obtaining high hardness of cemented carbide.This research provides a data-driven method for accurately and efficiently predicting cemented carbide properties,presenting valuable insights for the design and development of high-performance cemented carbide materials.
作者 宋睿 刘雪梅 王海滨 吕皓 宋晓艳 Song Rui;Liu Xue-Mei;Wang Hai-Bin;Lu Hao;Song Xiao-Yan(Key Laboratory of Advanced Functional Materials,Education Ministry of China,College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第12期300-310,共11页 Acta Physica Sinica
基金 国家自然科学基金(批准号:52271085,92163107,52171061)资助的课题。
关键词 硬质合金 硬度 机器学习 高通量预测 cemented carbide hardness machine learning high-throughput prediction
  • 相关文献

参考文献2

二级参考文献17

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部