摘要
为实现土壤墒情预测,文章以天津市蓟州区、静海区、宁河区、滨海新区的10个气象墒情自动监测站2018—2021年的3年数据为基础,对土壤墒情预测模型进行研究建立,并选取站点编号、空气温度、空气湿度、风速、风向等19项影响因子训练Elman神经网络,对土壤墒情进行短期(24 h)、中期(7 d)、长期(14 d)预测。结果显示,3个时期土壤墒情平均预测精度分别达到96.64%、90.60%、85.59%,表明Elman神经网络具有稳定性好、精度高的特点,训练出的土壤墒情预测模型准确度高,可为农业生产管理提供依据。
作者
杨靖峰
王锐竹
于澎湃
李争
YANG Jingfeng;WANG Ruizhu;YU Pengpai;LI Zheng
出处
《天津农林科技》
2024年第3期10-15,32,共7页
Science and Technology of Tianjin Agriculture and Forestry