摘要
针对风电机组变桨轴承磨损和断裂两种主要故障类型,基于机组SCADA数据分析,利用Relief-F特征参数提取,得到了变桨轴承故障主要的特征参数。再通过PCA主成分分析法对SCADA数据进一步除杂和优化,减少了输入样本的误差和数量。最后,运用ELM学习机对变桨轴承磨损和断裂状态进行识别,结果表明该方法能够准确识别变桨轴承状态,其准确率和诊断速率也明显高于常用的BP神经网络学习和SVM支持向量机。
作者
陈茜
李文明
苏亮
CHEN Qian;LI Wen-ming;SU Liang
出处
《水电站机电技术》
2024年第6期24-27,共4页
Mechanical & Electrical Technique of Hydropower Station