摘要
研究一类具有群体防御行为的庄稼-害虫-天敌模型的动力学性质.首先,给出了正平衡点的存在条件以及平衡点局部渐近稳定的条件;其次,利用规范型理论和中心流型定理系统分析了Hopf分支的相关性质,包括存在性、稳定性和分支方向等;最后,通过数值模拟验证理论分析的结果.
The dynamic properties of a crop-pest-natural enemy model with group defense behavior are studied.Firstly,the conditions for the existence of equilibria and the local asymptotic stability of the equilibria are determined.Next,the properties of Hopf bifurcation,such as existence,stability,and bifurcation direction,are systematically analyzed by using normal form theory and center manifold theorem.Finally,the theoretical analysis results are validated through numerical simulations.
作者
刘美玉
刘兵
LIU Meiyu;LIU Bing(School of Mathematics,Liaoning Normal University,Dalian Liaoning 116029,China;School of Mathematics,Anshan Normal University,Anshan Liaoning 114007,China)
出处
《鞍山师范学院学报》
2024年第2期6-14,共9页
Journal of Anshan Normal University
基金
国家自然科学基金项目(12171004)