期刊文献+

无人机集群物资配送保障路径优化问题研究

Research of UAV Swarms Material Distribution Routing Optimization
下载PDF
导出
摘要 论文以未来战场“精确保障、智能保障、灵巧保障”需求为牵引,以提升战场“最后一公里”物资保障时效为研究目标,针对战场这一特殊地域及保障环境,通过在人工蜂群算法基础上引入模拟退火算法与K-Means聚类选择算法,构建混合算法,开展无人机集群物资配送保障路径优化问题研究。实验表明,混合算法有效改善了人工蜂群算法的缺陷,在进行无人机集群配送保障路径优化时,寻优精度和有效性有明显改善,为未来智能化战争物资配送保障提供了一定的决策参考。 This paper focuses on the needs of"precise,smart and dexterous support"in the future battlefield,aims at improv-ing the effectiveness of material support"in the last mile of battlefield",and takes into consideration the special area of the battle-field and supporting environment,the simulated annealing algorithm and K-Means clustering selection algorithm are introduced on the basis of artificial bee colony algorithm,an improved artificial bee colony algorithm is proposed for UAV swarms material distribu-tion routing optimization.Experimental results show that the proposed algorithm improves the defects of artificial bee colony algo-rithm effectively,the optimization accuracy and effectiveness have been significantly improved,which provides certain deci-sion-making reference for material distribution support in the future intelligent war.
作者 罗凯文 吴嘉宝 邓韧 张天宇 张玉祥 LUO Kaiwen;WU Jiabao;DENG Ren;ZHANG Tianyu;ZHANG Yuxiang(Army Logistics Academy,Chongqing 401331;No.92980 Troops of PLA,Zhanjiang 524002)
出处 《舰船电子工程》 2024年第3期90-94,共5页 Ship Electronic Engineering
关键词 无人机集群 人工蜂群算法 路径优化 物资配送 UAV swarms artificial bee colony algorithm routing optimization material distribution
分类号 E919 [军事]
  • 相关文献

参考文献5

二级参考文献47

  • 1李仁府,独孤明哲,胡麟.基于PSO算法的路径规划收敛性与参数分析[J].华中科技大学学报(自然科学版),2013,41(S1):271-275. 被引量:7
  • 2PARK J W, OH H D, TAHK M J. UAV collision avoidance based on geometric approach [C]//Society of lnstrument and Control Engi- neers Annual Conference. Japan: IEEE, 2008:2122 - 2126.
  • 3L1N H, ROS I G, BIEWENER A A. Through the eyes of a bird: mod- eling visually guided obstacle flight [J]. Journal of The Royal Society Interface, 2014, 11(96): 1 - 12.
  • 4SAHAWNEH L R, BEARD R W. Chain-based collision avoidance for UAS sense-and-avoid systems [C] //American Institute of Aero- nautics and Astronautics Guidance, Navigation, and Control (GNC) Conference. Boston, USA: AIAA, 2013:4995 - 5009.
  • 5WU K L, LO C W, LIN Y C, et al. 3D path planning based on nonlin- ear geodesic equation [C]//The l lth IEEE International Conference on Control & Automation (ICCA). Taichung, Taiwan: IEEE, 2014: 342 - 347.
  • 6LIN Y C, SARIPALLI S. Path planning using 3D Dubins curve for unmanned aerial vehicles [C] //International Conference on Un- manned Aircraft Systems (1CUAS). Orlando, FL, USA: IEEE, 2014: 296 - 304.
  • 7CARBONE C, CINIGLIO U, CORRARO F, et al. A novel 3D ge- ometric algorithm for aircraft autonomous collision avoidance [C] //Proceeding of the 45th IEEE Conference on Decision and Control. San Diego, CA, USA: IEEE, 2008:1580 - 1585.
  • 8KHANSARI-ZADEH S M, BILLARD A. A dynamical system ap- proach to realtime obstacle avoidance [J]. Autonomous Robots, 2012, 32(4): 433 - 454.
  • 9YAO P, WANG H L, LIU C. 3-D dynamic path planning for UAV based on interfered fluid flow [C] //Proceedings of 2014 IEEE Chi- nese Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE, 2014:997 - 1002.
  • 10AOUDE G S, LUDERS B D, JOSEPH J M, et al. Probabilistically safe motion planning to avoid dynamic obstacles with uncertain mo- tion patterns [J]. Autonomous Robots, 2013, (35): 51 - 76.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部