期刊文献+

Kerogen Kinetic Distributions and Simulations Provide Insights into Petroleum Transformation Fraction (TF) Profiles of Organic-Rich Shales

原文传递
导出
摘要 Two hundred and fifty single first-order Arrhenius reactions are simulated to generate S2 pyrograms at three heating rates 25,15,and 5°C·min-1.The activation energy(E)and pre-exponential factor(A)of the reactions simulated follow a long-established trend of those variable values displayed by shales and kerogens.The characteristics of the transformation fraction(TF)profiles(product generation window temperatures)of the simulated single reactions are compared to the TF profiles of recorded shale pyrograms generated by multiple reactions with different E-A values lying near the defined E-A trend.Important similarities and differences are observed between the TF profile values of the two datasets.The similarities support the spread of E-A values involved in shale pyrogram best fits.The differences are most likely explained by the complexity of the multiple kerogen first-order and second-order reactions contributing to the recorded shale pyrograms versus the simplicity and crispness of the single first-order reactions simulated.The results also justify the validity of using the previously described“variable E-A pyrogram-fitting method”of multi-heating-rate shale pyrograms enabling optimizers to choose multiple reactions from an unlimited range of E-A values.In contrast,further doubt is cast on the validity of the constant-A pyrogram-fitting method used by the Easy%Ro technique,in that a distribution of reactions with a single A value is unlikely to represent the complex variety of kerogen macerals observed in shale formations.TF profiles generated by the variable E-A pyrogram-fitting method lie close to the established E-A trend and are likely to provide more realistic TF generation window temperatures than TF profiles generated by the constant-A pyrogram-fitting method.
作者 David A.Wood
机构地区 DWA Energy Limited
出处 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期747-757,共11页 地球科学学刊(英文版)
  • 相关文献

参考文献1

二级参考文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部