期刊文献+

Low Resource Chinese Geological Text Named Entity Recognition Based on Prompt Learning

原文传递
导出
摘要 Geological reports are a significant accomplishment for geologists involved in geological investigations and scientific research as they contain rich data and textual information.With the rapid development of science and technology,a large number of textual reports have accumulated in the field of geology.However,many non-hot topics and non-English speaking regions are neglected in mainstream geoscience databases for geological information mining,making it more challenging for some researchers to extract necessary information from these texts.Natural Language Processing(NLP)has obvious advantages in processing large amounts of textual data.The objective of this paper is to identify geological named entities from Chinese geological texts using NLP techniques.We propose the RoBERTa-Prompt-Tuning-NER method,which leverages the concept of Prompt Learning and requires only a small amount of annotated data to train superior models for recognizing geological named entities in low-resource dataset configurations.The RoBERTa layer captures context-based information and longer-distance dependencies through dynamic word vectors.Finally,we conducted experiments on the constructed Geological Named Entity Recognition(GNER)dataset.Our experimental results show that the proposed model achieves the highest F1 score of 80.64%among the four baseline algorithms,demonstrating the reliability and robustness of using the model for Named Entity Recognition of geological texts.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期1035-1043,共9页 地球科学学刊(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.42488201,42172137,42050104,and 42050102) the National Key R&D Program of China(No.2023YFF0804000) Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2022JDTD0004)
  • 相关文献

参考文献7

二级参考文献46

  • 1王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 2周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 3Grishman R,Sundheim B.Message Understanding Conference-6:A Brief History[C]//Proceedings of the 16th International Conference on Computational Linguistics.1996:466-471.
  • 4Beth M Sundheim.Named entity task definition,version 2.1[C]//Proceedings of the Sixth Message Understanding Conference,1995:219-332.
  • 5MUC[EB/OL]:http://www-nlpir.nist.gov/related_projects/muc/.
  • 6命名实体识别评测组.2004年命名实体评测大纲[OL].http://www.863data.com.cn.
  • 7沈达阳,孙茂松,黄昌宁.中国地名的自动辨识[J].计算机语言发展与应用,1995(10):68-76.
  • 8Manoranjan Dash,Huan.Selection for Classification[J].Intelligent Data Analysis,1997,1(3):131-156.
  • 9Cho H C,Okazaki N,Miwa M,et al.Named entity recognition with multiple segment representations[J].Information Processing&Management,2013,49(4):954-965.
  • 10Miao Y,Yajuan L,Qun L,et al.Chinese Named Entity Recognition and Disambiguation Based on Wikipedia[M]//Natural Language Processing and Chinese Computing.Springer Berlin Heidelberg,2012:272-283.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部