期刊文献+

多元密度函数的调整经验似然

Adjusted Empirical Likelihood of Multivariate Density Functions
原文传递
导出
摘要 研究独立样本情形多维密度函数调整经验似然置信区间的构造,证明了独立样本多维密度函数调整经验似然比统计量的极限分布为卡方分布,且证明了备择假设下调整经验似然的渐近性质,并通过模拟对比分析了调整经验似然、经验似然、正态逼近三种构造置信区间的方法.结果表明,对于多元密度函数置信区间的构造,调整经验似然的覆盖率更接近给定的名义置信水平,因此调整经验似然的表现优于经验似然和正态逼近. In this paper,we study the construction of the confidence interval of the adjusted empirical likelihood of the multi-dimensional density function for independent samples.We prove that the limit distribution of the adjusted empirical likelihood ratio statistic of the multi-dimensional density function for independent samples is the chi-square distribution,and prove the asymptotic property of the adjusted empirical likelihood under the alternative hypothesis.Three methods of constructing confidence intervals,namely adjusting empirical likelihood,empirical likelihood and normal approximation are analyzed by simulation.The results show that for the confidence interval construction of multivariate density function,the coverage of the adjusted empirical likelihood is closer to the given nominal confidence level,so the adjusted empirical likelihood performs better than the empirical likelihood and the normal approximation.
作者 陈珍珍 秦永松 CHEN Zhen-zhen;QIN Yong-song(Department of Mathematics and Statistics,Guangxi Normal University,Guilin 541006,China)
出处 《数学的实践与认识》 北大核心 2024年第5期110-120,共11页 Mathematics in Practice and Theory
关键词 多维密度函数 调整经验似然 置信区间 multidimensional density function adjusted empirical likelihood confidence interval
  • 相关文献

参考文献5

二级参考文献45

  • 1苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 2熊祖光.非参数核密度估计的空间聚类算法研究以及改进.吉林大学学报,2008,.
  • 3郑忠国.Boofstrap方法和稳健性.数学年刊:A辑,1986,.
  • 4K.B.Athreya.Bootstrap of the Mean in the Infinite Variance Case[J]. Ann Statist,1987,(15).
  • 5B.Efron.More Efficient Bootstrap Computation[J]. Ann Statist Ass, 1989,(3).
  • 6Pan J M,应用概率统计,1997年,13卷,183页
  • 7苏淳,中国科学.C,1996年,26卷,1091页
  • 8Prakasa Rao B L S,Nonparametric function estimation,1983年
  • 9Yuan Ming,A Glivenko-Gantelli lemma with applications
  • 10匡继昌.常用不等式[M].济南:山东科学技术出版社,2003..

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部