期刊文献+

连续小波型编织框架及其性质

Continuous Wavelet Weaving Frames and Their Properties
原文传递
导出
摘要 Hilbert空间中连续小波型编织框架是连续小波型框架和编织框架的推广.在已有文献的基础上,研究了Hilbert空间中连续小波型编织框架的构造及其相关性质.通过有界线性算子构造连续小波型编织框架并讨论了自身结构的一些性质;探究了连续小波型框架算子的范数与编织框架之间的关系;借助分析算子得到了连续小波型编织框架与连续编织框架之间的一个充要条件;最后证明了连续小波型编织框架在数列扰动下的稳定性. The continuous wavelet weaving frame in Hilbert space is a generalisation of the continuous wavelet frame and the weaving frame.In this paper,based on the existing literature,we study the construction of continuous wavelet weaving frames in Hilbert spaces and their related properties.The continuous wavelet weaving frame is constructed by means of a bounded linear operator and some properties of its own structure are discussed;the relationship between the parametrization of the continuous wavelet frame operator and the weaving frame is investigated;a suficient condition between the continuous wavelet weaving frame and the continuous weaving frame is obtained with the help of analytic operators;and finally,the stability of the continuous wavelet weaving frame is proved under the perturbation of the series.
作者 曹壮利 张建平 吴旭 CAO Zhuang-li;ZHANG Jian-ping;WU Xu(School of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处 《数学的实践与认识》 北大核心 2024年第5期213-222,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(11961072) 陕西省自然科学基础研究计划项目(2020JM-547)。
关键词 连续框架 编织框架 连续小波型编织框架 扰动 continuous frame weaving frame continuous wavelet weaving frame perturbation
  • 相关文献

参考文献2

二级参考文献28

  • 1李登峰,李保滨.Gabor乘子的特征刻画(英文)[J].河南大学学报(自然科学版),2006,36(1):1-4. 被引量:1
  • 2Shamooshaky M M. Wavelet type frames and Wavelet type bases [J]. International Journal of Mathematics and Mathematical Sciences, 2005,20 ~ 3237 -- 3245.
  • 3Christensen O. An Introduction to Frames and Riesz Bases[M]. Boston: BirkhOuser, 2003.
  • 4Casazza P G, Christensen O. Perturbation of operator and application to frame theory[J].J. Fourier Anal. Appl. , 1997, 5(3) :543--557.
  • 5Christensen O. Frames,Riesz bases and discrete Gabor/Wavelet expansions[J]. Bull. Amer. Math. Soc. , 2001,38(3): 273--291.
  • 6李登峰,薛明志.Banach空间上的基与框架[M].北京:科学出版社,2007.
  • 7DUFFIN R J ,SCHAEFFER A C. A class of nonhar?monic Fourier series[J]. Trans Amer Math Soc, 1952, 72(2): 341-366.
  • 8DAUBECHIES 1. Ten lectures on wavelets[M]. Philadelphia: SIAM, 1992: 53-105.
  • 9CHRISTENSEN O. An introduction to frames and Riesz bases[M]. Boston: Birkhauser, 2002: 1-136.
  • 10FEICHTINGER H G, STROHMER T. Gabor analy?sis and algorithms: theory and applications[M]. Boston: Birkhauser, 1998.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部