期刊文献+

Global dynamics of a Leslie-Gower predator-prey model in open advective environments

原文传递
导出
摘要 This paper investigates the global dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey model in open advective environments.We find that there exist critical advection rates,intrinsic growth rates,diffusion rates and length of the domain,which classify the global dynamics of the Leslie-Gower predator-prey system into three scenarios:coexistence,persistence of prey only and extinction of both species.The results reveal some significant differences with the classical specialist and generalist predator-prey systems.In particular,it is found that the critical advection rates of prey and predator are independent of each other and the parameters about predation rate have no influence on the dynamics of system.The theoretical results provide some interesting highlights in ecological protection in streams or rivers.
出处 《International Journal of Biomathematics》 SCIE 2024年第3期241-264,共24页 生物数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(11871403) Fundamental Research Funds for the Central Universities(XDJK2020B050).
  • 相关文献

参考文献1

二级参考文献11

  • 1M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predatorprey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16 (2003) 1069-1075.
  • 2S. S. Chen and J. P. Shi, Global stability in a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett. 25 (2012) 614-618.
  • 3W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling-type II functional response incorporating a prey refuge, J. Differential Equations 231 (2006) 534-550.
  • 4A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with delay, Nonlinear Anal. Real World Appl. 7 (2006) 1104-1118.
  • 5R. Peng and M. X. Wang, Global stability of the equilibrium of a diffusive HollingTanner prey-predator model, Appl. Math. Lett. 20 (2007) 664-670.
  • 6H. B. Shi, W. T. Li and G. Lin, Positive steady states of a diffusive predatorprey system with modified Holling-Tanner functional response, Nonlinear Anal.: Real World Appl. 11 (2010) 3711-3721.
  • 7Y. L. Tian and P. X. Weng, Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes, Appl. Math. Comput. 218 (2011) 3733-3745.
  • 8X. N. Guan, W. M. Wang and Y. L. Cai, Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal.: Real World Appl. 12 (2011) 2385-2395.
  • 9Y. Huang, F. Chen and L. Zhong, Stability analysis of a prey-predator model with Holling-type III response function incorporating a prey refuge, Appl. Math. Comput. 182(1) (2006) 672-683.
  • 10Q. Ye and Z. Li, Introduction to Reaction-Diffusion Equations (Science Press, Beijing, 1990).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部