摘要
研究了在R^(3)中有界区域内的多孔介质中相互作用的Brinkman-Forchheimer流体与Darcy流体方程组解的结构稳定性,假设在Ω_(1)中流体速度较慢,满足BrinkmanForchheimer方程组,而在Ω_(2)中,饱和流体满足Darcy方程组.借助于温度的四阶范数估计以及Sobolev不等式,构造能量表达式,推出该表达式所满足的微分不等式,积分得到了相互作用Brinkman-Forchheimer与Darcy流体方程组的解对Brinkman系数的连续依赖性结果.
The structural stability for the Brinkman-Forchheimer fuid interfacing with a Darcy fuid in a bounded region in R^(3) was studied.We assumed that the velocity of fluid was slow and it was governed by the Brinkman-Forchheimer equations in Ω_(1),while in Ω_(2),we supposed that the saturated fow satisfies the Darcy equations.With the aid of the fourth norm estimates for the temperatures and the Sobolev inequality,we formulated an energy expression,and the expression satisfies a differential inequality.By integrating,we were able to demonstrate the continuous dependence result for the Brinkman coefficient.
作者
石金诚
夏建业
SHI JINCHENG(School of Date Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处
《应用数学学报》
CSCD
北大核心
2024年第3期386-401,共16页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金项目(批准号:11371175)
广东省普通高校重点领域专项(批准号:2023ZDZX4069)
广州华商学院校内导师制项目(批准号:2020HSDS16)
广州华商学院项目(热弹性力学方程组的定性性态研究)资助。