期刊文献+

基于TOPSIS-MOPSO的侦察星座优化设计

Optimization Design of Reconnaissance ConstellationBased on TOPSIS-MOPSO
下载PDF
导出
摘要 侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。 The optimization of reconnaissance constellation is a key issue in the construction of space-based information system.In order to make up for the shortcomings of existing studies in which only a few performance indicators are used to optimize the reconnaissance constellation,an optimization model which comprehensively considers five performance indicators is presented.TOPSIS-MOPSO algorithm is proposed to solve the problem of insufficient selection pressure and diversity in the traditional Pareto-dominated evolutionary algorithm.The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)in the field of multi-attribute decision making is introduced into evolutionary algorithm and combined with Strengthened Pareto Dominate(SPD).An environmental selection strategy that can enhance both convergence and diversity of population is obtained.A global optimal particle selection strategy based on Harmonic distance is proposed to accelerate population convergence and protect the population diversity.The adaptive evolutionary operator selection strategy is proposed to help the algorithm get rid of the local optimal solution.Finally,TOPSIS-MOPSO algorithm is applied to the reconnaissance constellation optimization problem and is compared and analyzed with MOPSO,DGEA and AR-MOEA through experiment.The results show that,compared with thoses of other three algorithms,the optimal index values ofΔ*,IGD and HV are improved by 19.76%,89.07%and 28.2%respectively.
作者 刘亚丽 熊伟 韩驰 熊明晖 刘正 LIU Yali;XIONG Wei;HAN Chi;XIONG Minghui;LIU Zheng(Science and Technology on Complex Electronic System Simulation Laboratory,Space Engineering University,Beijing 101416,China)
出处 《电讯技术》 北大核心 2024年第6期893-901,共9页 Telecommunication Engineering
基金 复杂电子系统仿真实验室基金资助项目(6142401003022109)。
关键词 天基侦察系统 侦察星座优化 高维多目标优化 TOPSIS MOPSO space-based reconnaissance system reconnaissance constellation optimization high-dementional many-objective optimization TOPSIS MOPSO
  • 相关文献

参考文献11

二级参考文献93

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部