期刊文献+

面向电力巡检的5G室内三维指纹定位算法

5G Indoor Three-dimensional Fingerprint Localization Algorithm for Power Inspection
下载PDF
导出
摘要 针对目前电力巡检机器人在室内环境中存在的三维定位成本高、精度低的问题,文章利用5G信号特征和多信号分类(multiple signal classification,MUSIC)算法,提出面向电力巡检的5G室内三维指纹定位算法。首先构建三维信道模型,以降低多径干扰导致的定位信号参数偏差;其次提出多径定位信号优化算法,以克服随机噪声导致的定位信号相位偏移问题,以此降低定位决策的软硬件成本。仿真结果表明,本算法在三维室内定位精度和定位成本方面实现了较好的性能与平衡。 Aiming at the problem of high cost and low precision of three-dimensional localization of power inspection robots in indoor environment,this paper proposes a 5G indoor three-dimensional fingerprint localization algorithm for power inspection with 5G signal characteristics and multi-signal classification algorithm.Firstly,a three-dimensional channel model is constructed to reduce the deviation of positioning signal parameters caused by multi-path interference.Secondly,the multi-path positioning signal optimization algorithm is proposed to overcome the phase deviation caused by random noise,so as to reduce the hardware and software cost of positioning decision.Simulation results show that the proposed algorithm achieves good performance and balance in two aspects of three-dimensional indoor positioning accuracy and positioning cost.
作者 罗威 蒋政 于佳 刘锐 LUO Wei;JIANG Zheng;YU Jia;LIU Rui(Nanjing Nari Information Communication Technology Co.,Ltd.,Nanjing 211106,Jiangsu Province,China;State Grid Electric Power Research Institute Co.,Ltd.,Nanjing 211106,Jiangsu Province,China)
出处 《电力信息与通信技术》 2024年第6期81-86,共6页 Electric Power Information and Communication Technology
基金 国家电网有限公司总部科技项目资助“电力5G mMTC本地通信融合技术研究”(5700-202214478A-2-0-KJ)。
关键词 电力巡检 5G信号 三维定位 MUSIC算法 power inspection 5G signal three-dimensional positioning MUSIC algorithm
  • 相关文献

参考文献5

二级参考文献50

  • 1司伟建.MUSIC算法多值模糊问题研究[J].系统工程与电子技术,2004,26(7):960-962. 被引量:21
  • 2史龙,王福豹,段渭军,任丰厚.无线传感器网络Range-Free自身定位机制与算法[J].计算机工程与应用,2004,40(23):127-130. 被引量:114
  • 3董晓辉,柯亨玉,董志飞.阵列误差对四阶MUSIC算法到达角估计的影响[J].现代雷达,2005,27(1):41-43. 被引量:5
  • 4SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 267-280.
  • 5SWINDLEHURST A, KAILATH T. A performance analysis of subspace-based methods in the presence of model error: part Ⅰ-the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1758-1774.
  • 6FRIEDLANDER B. A sensitivity analysis of the MUSIC algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1740-1751.
  • 7LI F, VACCARO R J. Sensitivity analysis of DOA estimation algorithm to sensor errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 708-717.
  • 8HAMZA R, BUCKLEY K. An analysis of weighted eigenspace methods in the presence of sensor errors[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1140-1150.
  • 9FERREOL A, LARZABAL P, VIBERG M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 907-920.
  • 10KAVEH M, BARABELL A J. The statistical performance of the MU- SIC and the minimum-norm algorithms in resolving plane waves in noise[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34(2): 331-341.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部