期刊文献+

Combining machine and deep transfer learning for mediastinal lymph node evaluation in patients with lung cancer

下载PDF
导出
摘要 Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of the likelihood of such metastasis,thereby providing clinicians with crucial information to enhance diagnostic precision and ultimately improve patient survival and prognosis.Methods In total,623 eligible patients were recruited from two medical institutions.Seven deep learning models,namely Alex,GoogLeNet,Resnet18,Resnet101,Vgg16,Vgg19,and MobileNetv3(small),were utilized to extract deep image histological features.The dimensionality of the extracted features was then reduced using the Spearman correlation coefficient(r≥0.9)and Least Absolute Shrinkage and Selection Operator.Eleven machine learning methods,namely Support Vector Machine,K-nearest neighbor,Random Forest,Extra Trees,XGBoost,LightGBM,Naive Bayes,AdaBoost,Gradient Boosting Decision Tree,Linear Regression,and Multilayer Perceptron,were employed to construct classification prediction models for the filtered final features.The diagnostic performances of the models were assessed using various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value.Calibration and decision-curve analyses were also performed.Results The present study demonstrated that using deep radiomic features extracted from Vgg16,in conjunction with a prediction model constructed via a linear regression algorithm,effectively distinguished the status of mediastinal lymph nodes in patients with lung cancer.The performance of the model was evaluated based on various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value,which yielded values of 0.808,0.834,0.851,0.745,0.829,and 0.776,respectively.The validation set of the model was assessed using clinical decision curves,calibration curves,and confusion matrices,which collectively demonstrated the model's stability and accuracy.Conclusion In this study,information on the deep radiomics of Vgg16 was obtained from computed tomography images,and the linear regression method was able to accurately diagnose mediastinal lymph node metastases in patients with lung cancer.
出处 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期226-238,共13页 Virtual Reality & Intelligent Hardware
基金 the Science and Technology Funding Project of Hunan Province,China(2023JJ50410)(HX) Key Laboratory of Tumor Precision Medicine,Hunan colleges and Universities Project(2019-379)(QL).
  • 相关文献

参考文献1

二级参考文献1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部