期刊文献+

基于二阶聚类和鲁棒性随机分割森林算法的低压台区线损异常辨识 被引量:2

Line Loss Anomaly Identification of Low-voltage-station Based on Second-order Clustering and Robust Random Cut Forest Algorithm
下载PDF
导出
摘要 为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类,将相同工况的线损节点归并,然后将各类工况的节点线损数据导入RRCF算法中分析,通过删除和插入样本节点,并对插入节点后评判模型的复杂度进行计算,得到线损异常节点的评分值,进一步找出线损异常的节点。最终,通过有关实例验证所提方法的准确性与有效性。 To accurately identify the abnormal line loss in the substation area and ensure the economic and stable operation of the distribution network,in allusion to the abnormal line loss in the substation area,based on second-order clustering and robust random cut forest(abbr.RRCF)algorithm a method to detect the abnormal line loss in the substation area was proposed.Firstly,by means of second order clustering the different operating conditions of the substation area were clustered and the line loss nodes under the same operating conditions were merged.Secondly,the nodal line loss data of all kinds of operating conditions was led into RRCF algorithm to conduct the analysis.By means of deleting and inserting sample nodes and computing the complexity of the evaluation model after inserting nodes,the score values of abnormal line loss nodes could be obtained,and further the nodes with abnormal line loss could be found out.Finally,the effectiveness and accuracy of the proposed method are verified by related examples.
作者 刘雄 夏向阳 刘定国 胡军华 黄瑞 李泽文 史子轶 LIU Xiong;XIA Xiangyang;LIU Dingguo;HU Junhua;HUANG Rui;LI Zewen;SHI Ziyi(School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,Hunan Province,China;State Grid Hunan Electric Power Co.,LTD.,Changsha 410082,Hunan Province,China;State Grid Hunan Electric Power Co.,LTD.Power Supply Service Center(Metering Center),Changsha 410116,Hunan Province,China;School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330000,Jiangxi Province,China)
出处 《现代电力》 北大核心 2024年第3期441-447,共7页 Modern Electric Power
基金 国家自然科学基金项目(51977014)。
关键词 低压台区 二阶聚类 RRCF算法 线损异常 low-voltage substation area regional secondorder clustering RRCF algorithm abnormal line loss
  • 相关文献

参考文献13

二级参考文献165

共引文献270

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部