期刊文献+

植物ABCG转运蛋白功能的研究进展 被引量:1

Advances in understanding the functions of plant ABCG transporters
原文传递
导出
摘要 高等植物中细胞器及细胞之间是由生物膜分隔开来,但在植物的生理代谢及应对逆境胁迫的过程中,细胞器及细胞之间需要大量的信号与物质的交流.多数情况下,这些跨膜交流由膜上的转运蛋白来执行,其中以ABCG亚家族为代表的ABC转运蛋白家族是一类介导多种不同类型物质的跨膜转运以完成相应功能的转运蛋白.植物比其他真核生物拥有数量更多的ABCG转运蛋白,表明植物中ABCG转运蛋白具有多样且重要的功能. ABCG转运蛋白不仅参与植物正常生长发育过程中许多物质的转运,执行诸多重要的生理功能,还广泛参与植物对干旱、重金属、温度、渗透和抗生素等非生物胁迫,以及病原菌、害虫和植物化感作用造成的生物胁迫响应过程中的信号与物质转运,说明ABCG既与植物的正常生长发育相关,也在植物抵抗逆境胁迫中发挥重要作用.本文对植物ABCG转运蛋白的结构、分类、生理功能及在抗生物与非生物逆境胁迫的功能进行系统总结,为深入了解植物ABCG转运蛋白多样化功能、研究趋势和利用植物分子育种技术对ABCG基因进行表达调控以获得具有优良特性的植物新种质提供重要借鉴和参考. Biomembranes serve as barriers that separate organelles and cells. Despite the divisions, a significant number of signalsand substrates must be transported across biomembranes during plant metabolism and responses to various abiotic andbiotic stresses. In plants, transmembrane transportations are mostly facilitated by two main types of transporters: Carrierproteins and channel proteins. Among these transporters, the ATP binding cassette (ABC) transporter family, a large andmultifunctional group, plays a crucial role in mediating the transmembrane transportation of diverse substances. The ABCtransporter family can be further grouped into eight subfamilies: ABCA to ABCG and ABCI. Notably, the ABCGsubfamily stands out as the largest, and displays heightened higher functional diversity in the ABC transporter family. Inplants, only two types of ABCG transporters have been identified: The full-size pleiotropic drug resistance (PDR)transporters and the half-size white-brown complex (WBC) transporters. PDR transporters are equipped with twonucleotide-binding domains (NBDs) and two transmembrane domains (TMDs), and can independently carry out substratetransportation. Conversely, WBC transporters possess only a single NBD and TMD, requiring the formation ofhomodimers or heterodimers for substrate transportation. There is a greater abundance of ABCG transporters as comparedto other eukaryotes, suggesting their diverse range of important roles in plant biology. Indeed, many studies have shownthat plant ABCG transporters play key roles in many aspects of plant development, including stomata opening, hormonetransportation (e.g., cytokinin, abscisic acid, jasmonic acid, and strigolactones), sporopollenin transport, cuticle synthesisprecursor exportation, and transportation of secondary metabolites such as tonquinol, ginsenosides, β-caryophyllene, andcapsaicin. Furthermore, plant ABCG transporters are widely involved in plant responses to abiotic stresses such as heavymetal (e.g. aluminum, cadmium, copper, and lanthanum) resistance by facilitating efflux of heavy metals, droughtresistance, osmotic stress, and high-temperature resistance through abscisic acid transportation and formation of thickercuticle. They are also known to regulate abscisic acid transportation, cuticle thickness, as well as kanamycin resistancethrough antibiotic sequestration into the vacuole of plant cell. Plant ABCG transporters are known to play roles in bioticresistance against pathogens and pests by regulating jasmonic acid, salicylic acid, and anti-pathogen metabolitestransportation and accumulation. They play roles in allelopathy by mediating chemical compound secretion into theenvironment. This review presents a comprehensive discussion of recent progress in the structures, classifications,physiological functions, and roles of plant ABCG transporters. Current research advances highlight the crucial roles ofABCG transporters not only in plant growth and development but also in plant resistance to diverse abiotic and bioticstresses. We conclude by proposing five important research trends for future studies on ABCG transporters andhighlighting the potential use of plant molecular breeding technology to generate new plant germplasm with enhancedcharacteristics by regulating the expression of ABCG transporter genes.
作者 孙洁婷 敬雪皎 赵丹妮 潘烨鑫 罗启哲 向垒 莫测辉 侯学文 Jieting Sun;Xuejiao Jing;Danni Zhao;Yexin Pan;Qizhe Luo;Lei Xiang;Cehui Mo;Xuewen Hou(Center for Photosynthesis and Plant Stress Biology,College of Life Sciences,South China Agricultural University,Guangzhou 510642,China;State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,College of Life Sciences,South China Agricultural University,Guangzhou 510642,China;Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials,College of Life Science and Technology,Jinan University,Guangzhou 510632,China)
出处 《科学通报》 EI CAS CSCD 北大核心 2024年第14期1866-1880,共15页 Chinese Science Bulletin
基金 国家自然科学基金(42077300,42030713,42177187)资助。
关键词 ABCG转运蛋白 生理代谢 生物胁迫 非生物胁迫 抗逆作用 ABCG transporter physiological metabolism biotic stresses abiotic stresses stresses resistance
  • 相关文献

参考文献16

二级参考文献104

  • 1赵胡,李裕红.植物ABC转运蛋白研究综述[J].海峡科学,2012(2):13-16. 被引量:14
  • 2席嘉宾,陈平,张惠霞,郑玉忠,杨中艺.中国地毯草野生种质资源耐旱性变异的初步研究[J].草业学报,2006,15(3):93-99. 被引量:29
  • 3鲁守平,隋新霞,孙群,孙宝启.药用植物次生代谢的生物学作用及生态环境因子的影响[J].天然产物研究与开发,2006,18(6):1027-1032. 被引量:100
  • 4郭安源,朱其慧,陈新,罗静初.GSDS:基因结构显示系统[J].遗传,2007,29(8):1023-1026. 被引量:199
  • 5Ariizumi T,Hatakeyama K,Hinata K,Sato S,Kato T,Tabata S,Toriyama K (2003).A novel male-sterile mutant of Arabidopsis thaliana,faceless pollen-1,produces pollen with a smooth surface and an acetolysis-sensitive exine.Plant Mol Biol,53:107--116.
  • 6Bedinger P (1992).The remarkable biology of pollen.Plant Cell,4:879--887.
  • 7Dickinson HG,Elleman CJ,Doughty J (2000).Pollen coatingschimaeric genetics and new functions.Sex Plant Rep,12:302--309.
  • 8Dong X,Hong Z,Sivaramakrishnan M,Mahfouz M,Verma DP (2005).Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis.Plant J,42:315--328.
  • 9Hannoufa A,McNevin J,Lemieux B (1993).Epicuticular Waxes of eceriferum mutant of Arabidopsis thaliana.Phytochemistry,33:851--855.
  • 10Heslop-Harrison J (1971).Wall pattern formation in angiosperm microsporogenesis.Symp Soc Exp Biol,25:277--300.

共引文献115

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部