摘要
为了更好研究混沌现象的本质和利用混沌,根据混沌系统的李雅普诺夫稳定性理论和分岔理论研究了一类三维广义Rabinovich系统的混沌动力学特性,包括耗散性、平衡点和局部渐近稳定性、李雅普诺夫指数、李雅普诺夫维数、分岔图、全局吸引域等.依据混沌系统全局指数吸引集的结果和Dini导数,设计合适的控制器实现了两个相同混沌系统的全局指数同步.为了使所设计的控制器在实际应用中更容易实现且使同步方案有高效的同步速率,文章设计了线性反馈控制器使两个混沌系统达到全局指数同步.文章的创新点在于,首先得到了该混沌系统每个变量最终界的数学表达式,然后利用混沌系统的有界性得到了混沌系统控制器的精确数学表达式.最后,文章对同步过程进行数值模拟,仿真结果证实了理论的可行性.
In order to study the nature of chaos and make use of chaos better,chaos in a three-dimensional generalized Rabinovich system is studied in this paper according to Lyapunov stability theory and bifurcation theory,including dissipation,the equilibrium point and local asymptotic stability,Lyapunov exponent,Lyapunov dimension,bifurcation diagram,global attractive domain,etc.According to the result of global exponential attractive set of this chaotic system and Dini derivative,a suitable controller is designed to realize global exponential synchronization for two identical chaotic systems.A linear feedback controller is designed to achieve global exponential synchronization for two identical chaotic systems in order to make it easier to achieve fast synchronization for chaos synchronization scheme in practical applications.The innovation of this paper is that the boundedness of the chaotic system is obtained firstly,then the precise mathematical expression of the controller of this chaotic system is obtained by using the boundedness of this chaotic system.Finally,the numerical simulation of the synchronization process is carried out and the simulations confirm the feasibility of the theoretical results.
作者
陈松
张付臣
肖敏
CHEN Song;ZHANG Fuchen;XIAO Min(School of Mathematics and Statistics,Chongqing Key Laboratory of Statistical Intelligent Computing and Monitoring,Chongqing Technology and Business University,Chongqing 400067;College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023)
出处
《系统科学与数学》
CSCD
北大核心
2024年第5期1311-1323,共13页
Journal of Systems Science and Mathematical Sciences
基金
重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1548)
“成渝地区双城经济圈建设”科技创新专项项目(KJCX2020037)
重庆市教委科技项目(KJQN202100813)
国家自然科学基金项目(62073172)
江苏省自然科学基金(BK20221329)资助课题。
关键词
混沌系统
Dini
导数
稳定性
全局吸引域
全局指数同步
Chaotic system
Dini derivative
stability
global attractive domain
global exponential synchronization