期刊文献+

一种融合LiDAR点云与影像的建筑物提取方法

A Building Extraction Method Based on LiDAR Point Cloud and Image
原文传递
导出
摘要 建筑物的空间信息可以为城市规划、土地管理等提供重要参考。近年来,利用遥感方法提取建筑物引起了许多学者的关注,其核心是提取能够准确描述建筑物的特征,将其与其他物体区分开来。机载激光雷达获取的点云可以准确描述物体的三维特征,但具有离散性;航空图像具有丰富而连续的纹理信息,但缺乏对空间位置的描述。此外,现有特征之间可能存在冗余,从而降低了效率和准确性。为此,本文提出一种基于机载LiDAR(light detection and ranging)点云与航空影像融合的建筑物提取方法。首先,将两类数据源配准融合,实现更丰富的特征提取;其次,使用特征选择方法,降低特征维度,减少计算消耗的同时提高提取精度。实验结果表明,所提方法的有效性,优于生产中常用的LiDAR⁃Suite和Terrasolid软件。 The spatial information of buildings can provide im⁃portant references for urban planning,land management,etc.The extraction of buildings with remote sensing methods has attracted the attention of many scholars in recent years.The core is to extract features that can accurately describe the buildings,and then distinguish them from others objects.The point cloud acquired by airborne LiDAR can accurately de⁃scribe the three-dimensional features of objects,but it is dis⁃crete.Aerial images have rich and continuous texture informa⁃tion but lack the depiction of the spatial location.In addition,there may be redundancy among existing features,reducing the efficiency and accuracy.In this paper,a building extrac⁃tion method for the fusion of the LiDAR point cloud and the aerial image is proposed.The registration and fusion of these data can achieve richer feature extraction.Then,the feature selection method is employed to reduce the dimension,and lessen the calculation consumption and improve the accuracy.Experimental results show the effectiveness of the proposed method.It is superior to the LiDARSuite and Terrasolid soft⁃ware that are commonly used in production.
作者 王思远 吴怡凡 李咏旭 黄一鸣 WANG Siyuan;WU Yifan;LI Yongxu;HUANG Yiming(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China)
出处 《测绘地理信息》 CSCD 2024年第3期85-90,共6页 Journal of Geomatics
基金 国家自然科学基金(41771368)。
关键词 建筑物提取 机载LIDAR 航空影像 特征选择 building extraction airborne LiDAR aerial im⁃age feature selection
  • 相关文献

参考文献9

二级参考文献75

  • 1赖旭东,万幼川.一种针对激光雷达强度图像的滤波算法研究[J].武汉大学学报(信息科学版),2005,30(2):158-160. 被引量:17
  • 2王树根,王军利,王爱萍.基于整体变分模型的影像阴影检测算法研究[J].武汉大学学报(信息科学版),2006,31(8):663-666. 被引量:27
  • 3王成,Menenti M,StollM P,李传荣,唐伶俐.机载激光雷达数据的误差分析及校正[J].遥感学报,2007,11(3):390-397. 被引量:37
  • 4张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2007:167.
  • 5熊娜 程新文.LiDAR数据特点及其滤波分类方法.中国水运,2008,(1):151-152,154.
  • 6Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the 6^th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995,39-43.
  • 7Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks. Piscataway, New Jersy: IEEE Service Center, 1995, 1942-1948.
  • 8Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation. New Jersy: IEEE Press, 1998, 69-73.
  • 9Aler B, Vincent J, Anyakoha C. A review of particle swarm optimization. Natural Computing, 2008, 7(3):109-124.
  • 10LiuJ H, FanXP, QuZH. An improvedparticle swarm optimization with mutation based on similarity. The 3^rd International Conference on Natural Computation. Haikou, China, 2007,9 : 824-828.

共引文献593

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部