期刊文献+

基于高分六号的南昌市植被地上生物量遥感估算

Remote Sensing Estimation of Vegetation Above-Ground Biomass in Nachang Based on GF-6 Image
原文传递
导出
摘要 结合高分六号(GF-6)遥感数据对植被的光谱特征和纹理特征等参数进行提取,对于实地测量的树高和胸径等数据,使用异速生长方程将其转化为地上生物量的观测值。分别采用随机森林(random forest,RF)、支持向量机(sup⁃port vector machine,SVM)和K近邻算法(K-nearest neigh⁃bor,K-NN),结合实地采样数据构建植被地上生物量遥感反演模型,并对模型进行拟合效果检验和精度验证。结果表明,在3种机器模型中,随机森林模型的数据结果最优,其决定系数为0.6638,均方根误差为28.13。最终选择随机森林模型对南昌市植被地上生物量进行估算,得到南昌市的植被生物量分布图,为后续研究城市生物量遥感估算和城市生态研究供科学依据。 This paper firstly extracts spectral characteristics and texture characteristics of vegetation with GF-6 remote sensing data,then convert the tree height and DBH measured in the field into the observed values of aboveground biomass through the allometric growth equation.Secondly,the re⁃mote sensing inversion model of vegetation aboveground bio⁃mass is constructed through random forest,support vector ma⁃chine and K-nearest neighbor algorithm and incorporation of sampling data,.Thirdly,the fitting effect and accuracy of the model are tested.The results show that among the three ma⁃chine models,the random forest model has the best data re⁃sult,with its determination coefficient 66.38 and the root mean square error 28.13.Finally,the random forest model is selected to estimate the aboveground biomass of vegetation in Nanchang city,and the vegetation biomass distribution map of Nanchang city is obtained,which provides scientific basis for the follow-up research of urban biomass remote sensing es⁃timation and urban ecological research.
作者 刘奕彤 邵振峰 吴长枝 齐晓飞 LIU Yitong;SHAO Zhenfeng;WU Changzhi;QI Xiaofei(State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China;Xi’an Institute of Surveying and Mapping,Xi’an 100081,China)
出处 《测绘地理信息》 CSCD 2024年第3期107-112,共6页 Journal of Geomatics
基金 中央高校基本科研业务费专项资金(2042021kf0007) 灾害天气国家重点实验室开放课题(2021LASW-A1)。
关键词 地上生物量 高分六号 遥感反演 机器学习 above-ground biomass GF-6 remote sensing inversion machine learning
  • 相关文献

参考文献7

二级参考文献93

  • 1王建荣,王任享.“天绘一号”卫星无地面控制点EFP多功能光束法平差[J].遥感学报,2012,16(S1):112-115. 被引量:18
  • 2NOH Nam-Jin,SON Yowhan,LEE Sue-Kyoung,SEO Kyung-Won,HEO Su-Jin1,YI Myong-Jong,PARK Pil-Sun,KIM Rae-Hyun,SON Yeong-Mo,LEE Kyeong-Hak.Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J].Science China(Life Sciences),2010,53(7):822-830. 被引量:24
  • 3张雪红,赵峰,刘绍民,王锦地,辛羽飞,毛德发.冬小麦红边参数各向异性特征分析[J].农业工程学报,2006,22(6):7-11. 被引量:7
  • 4Zheng D L,Heath L S,Ducey M J. Forest BiomassEstimated from MODIS and FIA Data in the Lake States:MN,WI and MI,USA[J].Forestry,2007,(03):265-278.
  • 5Wessels K J,Prince S D,Zambatis N. Rela- tionship Between Herbaceous Biomass and,1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park,South Africa[J].International Journal of Remote Sensing,2006,(5/6):951-973.doi:10.1080/01431160500169098.
  • 6le Maire G,Marsden C,Nouvellon Y. MO- DIS NDVI Time-Series Allow the Monitoring of Eu- calyptus Plantation Biomass[J].Remote Sensing of Environment,2011,(10):2613-2625.
  • 7Rahman M M,Csaplovics E,Koch B. Satellite Es- timation of Forest Carbon Using Regression Models[J].International Journal of Remote Sensing,2008,(23):6,917-6,936.
  • 8Gasparri N I,Parmuchi M G,Bono J. Asses- sing Multi-temporal Landsat,7 ETM+ Images for Estimating Above-ground Biomass in Subtropical dry Forests of Argentina[J].Journal of Arid Envi- ronments,2010,(10):1262-1270.
  • 9Soenen S A,Peddle D R,Hall R J. Estima- ting Aboveground Forest Biomass from Canopy Re- flectance Model Inversion in Mountainous Terrain[J].Remote Sensing of Environment,2010,(07):1325-1337.
  • 10Bar Massada A,Carmel Y,Tzur G E. As- sessment of Temporal Changes in Ahoveground Forest Tree Biomass Using Aerial Photographs and Allometric Equations[J].Canadian Journal of For- est Research,2006,(10):2585-2594.

共引文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部