摘要
非共价构象锁(NCLs)策略被广泛用于构建高性能有机半导体.从分子层面深入探索NCLs对有机光电受体材料和界面的影响,有助于开发高性能光电材料.本文提出了通过整合NCLs和π桥的策略,开发了三种新型Y系列受体(YO、YS、YSe)来增强分子性能,并揭示了NCLs在有机光电受体材料中的作用机制.通过分析,我们首次发现,在适当的位置引入π桥不仅可在骨架内形成多重NCLs,也可与翼链形成NCLs,进一步增强受体的平面性和刚性,从而有助于增强光吸收和减少能量损失.此外,除电荷转移方向改善外,新体系电荷转移态的比例分别增加了8%、20%和36%,助力界面电荷分离.本工作通过π桥工程引入多重NCL,改善受体材料光电性能和界面特性,有望提高有机光伏器件的光电转换效率.
Noncovalent conformational lock(NCL)strategies are widely employed to construct high-performance organic semiconductors.The systematic exploration of the influence of NCLs on the acceptors and interfaces from the atomic scale can help to achieve high-performance optoelectronic materials and devices.Here,we present a strategy integrating NCLs andπ-bridge to design three novel acceptors(YO,YS,YSe)to enhance molecular properties and uncover the underlying mechanism of NCLs.The photoelectric properties of acceptors and donor(D)/acceptor interfaces are thoroughly explored by first-principles calculations.We find for the first time that introducingπ-bridge at the appropriate position not only forms multiple NCLs within the backbone but also forms NCLs with the wing chain,further enhancing acceptors’planarity and rigidity.For acceptors,NCLs contribute to stronger light harvesting and reduced energy losses.Except for the charge-transfer(CT)directions,the amounts of interfacial CT states of D/YO,D/YS,and D/YSe increase by 8%,20%,and 36%,rspectively.Therefore,introducing multiple NCLs byπ-bridge engineering into the benchmark acceptors is a possible avenue toward high-performce organic photovoltaic.Overall,our findings underscore that the incorporation of multiple NCLs throughπ-bridges can substantially enhance power conversion efficiencies through improved photoelectric properties,and interfacial characteristics.
作者
杨杰
李全松
李泽生
Jie Yang;Quansong Li;Zesheng Li(School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing,100081,China)
基金
financially supported by the National Natural Science Foundation of China(22173008)
Beijing Key Laboratory for Chemical Power Source and Green Catalysis(2013CX02031)。