期刊文献+

Controlling Three-Step and Five-Step Spin Transitions by Polymorphism in an Fe^(Ⅲ) Spin Crossover Complex

原文传递
导出
摘要 Comprehensive Summary,Regulating spin crossover(SCO)behavior,especially controlling the spin transition steps,is an important scientific issue,mainly because people aim to control spin bistability and multistability.Presently,SCO bistability can be regulated by changing the ligand-modifying species,non-coordinated anions,guest molecules,and metal-ion dopant.However,the control of multistability is extremely challenging,especially in Fe(III)SCO compounds.Here,we report that[FeIII(H-5-Br-thsa)(5-Br-thsa)]·H2O(5-Br-thsa=(5-bromo-2-hydroxybenzylidene)hydrazinecarbothioamide),a compound we have reported before,exists in two polymorphic forms:polymorph 1 exhibits three-step SCO,and polymorph 2 shows five-step SCO,with multi-step SCO behavior effectively regulated by polymorphism.According to single-crystal and powder X-ray diffractometry,polymorphs 1 and 2 crystallize in different space groups during their spin transitions,with two-step symmetry breaking observed(Pbcn→Pnc2→Pbcn for polymorph 1;P21/n→Pn→P21/n for polymorph 2).We realized that the behavior of these two polymorphs depends significantly on the structure,including(i)the average Fe—N bond distance,(ii)deformation of octahedral FeIII atoms,and(iii)distinct crystal packing,which account for the large differences observed in magnetic properties.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第8期879-886,共8页 中国化学(英文版)
基金 supported by the National Natural Science Foundation of China(NSFC,21971124,22275100,22150710513) the Ph.D.Candidate Research Innovation Fund of the NkU School of Materials Science and Engineering.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部