期刊文献+

Exploring the Effect of Plasticity on the Phase Imaging of TM-AFM Through Molecular Dynamics Simulations

原文传递
导出
摘要 In the tapping-mode atomic force microscope(TM-AFM),the probe tip continuously taps the sample surface,which may cause plastic deformation of the sample and result in energy dissipation.The energy dissipation of the probe is closely related to the scanned phase image.To quantify the energy dissipation due to plastic indentations of the sample,this study utilized a combination of molecular dynamics(MD)simulations and experiments on single-crystal copper samples,including multiple nano-indentation tests.The energy dissipation of the probe due to the plastic deformation of the sample was calculated by integrating the hysteresis curve of the indentation depth versus the force applied to the indenter.The simulation results are in good agreement with the experimental ones.Both sets of results have demonstrated that the plastic energy dissipation decreases as the number of indentations increases,and eventually the energy of the probe tends to stabilize.This equilibrium energy dissipation is associated with other dissipation mechanisms.Furthermore,it was observed that,after hundreds of taps,the dissipated energy of plastic deformation could be ignored,implying that the scanned image may not reflect the plasticity information of the sample after multiple taps of the probe on the sample surface for scanning.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期297-304,共8页 固体力学学报(英文版)
基金 support from the National Natural Science Foundation of China(NSFC 11572031).
  • 相关文献

参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部