期刊文献+

一类充分下降的混合CD-LS共轭梯度法

A Class of Sufficiently Descending Hybrid CD-LS Conjugate Gradient Methods
原文传递
导出
摘要 为了结合共轭下降(conjugate descent,CD)法良好的理论性质和Liu-Storey(LS)法较好的数值效果,以降低小步长对迭代的不良影响,以及使搜索方向的下降性独立于线搜索的选择。通过混合CD法和LS法的分子,对梯度函数进行了相应的修正。方向的充分下降性独立于线搜索的选取,可应用于多种线搜索;基于Wolfe线搜索,证明了算法的全局收敛性。42类无约束测试函数和图像去噪的结果表明,基于相同的终止条件所提出的算法的迭代次数和迭代时间均少于之前的3类共轭梯度算法。 In order to combine the good theoretical properties of Conjugate Descent(CD)method and the good numerical effect of Liu-Storey(LS)method,it is necessary to reduce the adverse effect of small steps on iteration,and make the decline of search direction independent of the selection of line search.By mixing the molecules of the CD method and the LS method,the gradient function was modified accordingly.The sufficient descent of direction is independent of the selection of line search and can be applied to a variety of line searches.Based on the Wolfe line search,the global convergence of the algorithm is proved.The results of 42 classes of unconstrained test function and image denoising show that based on the same termination conditions,the number of iterations and iteration time of the proposed algorithm are lower than those of the previous three types of conjugate gradient algorithms.
作者 尹玉玲 彭再云 梁仁莉 王鹏 YIN Yuling;PENG Zaiyun;LIANG Renli;WANG Peng(College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期26-35,共10页 Journal of Chongqing Normal University:Natural Science
基金 重庆市研究生联合培养基地建设项目(No.JDLHPYJD2021016) 重庆交通大学研究生科研创新项目(No.2022ST005) 国家自然科学基金面上项目(No.12271067) 重庆市教育委员会科学技术研究计划——重点项目(No.KJZD-202200704),青年项目(No.KJQN202000710) 重庆市高校创新研究群体项目(No.CXQT21021) 重庆市自然科学基金面上项目(No.cstc2021jcyjmsxmX0080,No.CSTB2022NSCQ-MSX1498)。
关键词 混合共轭梯度法 充分下降性 无约束优化 图像去噪 mixed conjugate gradient method sufficient descent unconstrained optimization image denoising
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部