期刊文献+

基于人工智能算法的商品归类研究与应用

Research and Application of Commodity Classification Based on Artificial Intelligence Algorithm
原文传递
导出
摘要 准确高效的商品归类有助于进出口企业提升通关速度、降低通关成本。为帮助进出口企业传统商品归类在效率和准确率等方面实现进一步提升,本文利用企业申报数据,构建了基于双向转换编码器表征(Bidirectional Encoder Representations from Transformers,BERT)与文本卷积神网络(Text Convolutional Neural Network,Text CNN)联合模型的商品归类算法,并完成归类系统开发及验证。以企业实际商品申报数据进行测试,归类准确率达95%以上,取得了较好的应用效果。 Accurate and efficient commodity classification helps import and export enterprises to improve the speed of customs clearance and reduce the cost of customs clearance.To improve efficiency and accuracy in classifying traditional goods for import and export enterprises,this paper uses enterprise declaration data to construct a commodity classification algorithm based on a combined model of Bidirectional Encoder Representations from Transformers(BERT)and Text Convolutional Neural Network(TextCNN),and completes the development and verification of the classification system.According to the test of the actual commodity declaration data of those enterprises,the single accuracy rate is over 95%,achieving good application results.
作者 商志坚 熊涛 刘强 李鼎一 钱胜胜 孙学忠 张明光 SHANG Zhi-Jian;XIONG Tao;LIU Qiang;LI Ding-Yi;QIAN Sheng-Sheng;SUN Xue-Zhong;ZHANG Ming-Guang(China E-Port Data Center,Beijing 100011;COSCO SHIPPING Logistics&Supply Chain Management Co.,Ltd.,Beijing 100025;Instituteof Automation,ChineseAcademyof Sciences,Beijing100190;East Port Technology Co.,Ltd.,Beijing 100020)
出处 《中国口岸科学技术》 2024年第5期40-46,共7页 China Port Science and Technology
关键词 商品归类 文本卷积神经网络(Text CNN) 双向转换编码器表征(BERT) commodity classification Text Convolutional Neural Network(Text CNN) Bidirectional Encoder Representations from Transformers(BERT)
  • 相关文献

参考文献7

二级参考文献54

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部