期刊文献+

拟半双正交分数阶多小波框架的刻画

Description of quasi-semi-biorthogonal fractional multiwavelet frame
下载PDF
导出
摘要 本文在半正交分数阶多小波框架的基础上,运用多分辨分析,泛函分析,矩阵理论研究L~2(R)上多元小波框架的特征,将半正交分数阶多小波框架推广到拟半双正交分数阶多小波框架,给出了拟半双正交分数阶多小波框架的概念,得到了严格拟半双正交分数阶多小波框架的等价条件,证明了广义多分辨分析分数阶规范对偶多小波框架与拟半双正交分数阶规范对偶多小波框架满足等价条件. Based on the semi-orthogonal fractional multiwavelet frames and using multi-resolution analysis, functional analysis and matrix theory are used to study the characteristics of the multivariate wavelet framework on L~2(R). The semi-orthogonal fractional multiwavelet frames are generalized to the quasi-semi-biorthogonal fractional multiwavelet framework, equivalence conditions for a strictly quasi-biorthogonal fractional multiwavelet frames are obtained. Prove that the generalized multiresolution analytical fractional gauge dual multiwavelet framework and the quasibiorthogonal fractional gauge dual multiwavelet framework satisfy the equivalence relation.
作者 刘瑞龙 陈清江 LIU Ruiong;CHEN Qingjiang(School of Science,Xi′an University of Architectural Science and Technology,Xi′an 710055,China)
出处 《纯粹数学与应用数学》 2024年第2期327-338,共12页 Pure and Applied Mathematics
基金 国家自然科学基金(61902304) 陕西省自然科学基金(2021JQ-495)。
关键词 小波框架 框架理论 多分辨分析 分数阶小波框架 拟半双正交 wavelet frame framework theory multi-resolution analysis fractional wavelet frame quasi-semi-biorthogonal
  • 相关文献

参考文献4

二级参考文献23

  • 1施咸亮,陈芳.仿射框架的必要条件和充分条件[J].中国科学(A辑),2005,35(7):831-840. 被引量:6
  • 2TAO Ran,DENG Bing,WANG Yue.Research progress of the fractional Fourier transform in signal processing[J].Science in China(Series F),2006,49(1):1-25. 被引量:100
  • 3Auscher P. Wavelets, fractals and application. PhD Thesis. Paris: University of Paris-Dauphine, 1989.
  • 4Chui C K, Wang J Z. A cardinal spline approach to wavelets. Proc Amer Math Soc, 1991, 113: 785-793.
  • 5Chui C K, Wang J Z. A general framework of compactly supported splines and wavelets. J Approx Theory, 1992, 71:263-304.
  • 6Chui C K, Wang J Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc, 1992,330: 903-915.
  • 7Paluszyński M,?iki? H, Weiss G, et al. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv Comput Math, 2003, 18: 297-327.
  • 8Baki? D. Semi-orthogonal Parseval frame wavelts and generalized multiresolution analyses. Appl Comput Harmon Anal, 2006, 21: 281-304.
  • 9Baki? D. On admissible generalized multiresolution analyses. Grazer Math Ber, 2006, 348: 15-30.
  • 10Liu Z, Hu G, Wu G, et al. Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA. Chaos Solitons Fractals, 2006, 38: 1449-1456.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部