摘要
随着大数据的不断发展,用户的个性化推荐得到普遍应用,现有的推荐算法忽略了用户之间的多种社交关系组成的社团结构,但在现实的网络空间中用户间的多种社交关系可以很好的作用于推荐系统。基于多子网复合复杂网络模型,利用多种社交关系组成的社团结构特性,提出了基于多社交关系的社团划分概率矩阵推荐算法。通过在真实数据集Epinions上与现有推荐算法进行对比,准确率评价指标δMAE、δRMSE分别提高了30%、20%,由此可以证明,基于多社交关系的社团划分概率矩阵推荐算法能有效提高推荐准确率。
With the continuous development of big data,the personalized recommendation of users is widely used.The existing recommendation algorithms ignore the community structure composed of various social relations between users.Relationships can be used well in recommendation systems.Based on the multi-subnet complex network model,this paper proposes a community partitioning probability matrix recommendation algorithm based on multiple social relationships by using the community structure characteristics composed of multiple social relationships.By comparing with the existing recommendation algorithms on the real data set Epinions,the accuracy evaluation indicatorsδMAE andδRMSE have been improved by 30%and 20%respectively.It can be proved that the community division probability matrix recommendation algorithm based on multiple social relations can effectively improve the recommended accuracy.
作者
张德亮
宋振华
郑震宇
王新
闫怀创
ZHANG Deliang;SONG Zhenhua;ZHENG Zhenyu;WANG Xin;YAN Huaichuang(Institute of Jinan Software,China United Network Communication Group Co.,Ltd.,Jinan 250100,China)
出处
《齐鲁工业大学学报》
CAS
2024年第3期1-7,共7页
Journal of Qilu University of Technology
关键词
多子网复合复杂网络
多关系社交网络
社团结构
矩阵分解
multi-subnet composite complex network
multi-relational social network
community structure
matrix decomposition