期刊文献+

Automated identification of steel weld defects,a convolutional neural network improved machine learning approach

原文传递
导出
摘要 This paper proposes a machine-learning-based methodology to automatically classify different types of steel weld defects,including lack of the fusion,porosity,slag inclusion,and the qualified(no defects)cases.This methodology solves the shortcomings of existing detection methods,such as expensive equipment,complicated operation and inability to detect internal defects.The study first collected percussed data from welded steel members with or without weld defects.Then,three methods,the Mel frequency cepstral coefficients,short-time Fourier transform(STFT),and continuous wavelet transform were implemented and compared to explore the most appropriate features for classification of weld statuses.Classic and convolutional neural network-enhanced algorithms were used to classify,the extracted features.Furthermore,experiments were designed and performed to validate the proposed method.Results showed that STFT achieved higher accuracies(up to 96.63%on average)in the weld status classification.The convolutional neural network-enhanced support vector machine(SVM)outperformed six other algorithms with an average accuracy of 95.8%.In addition,random forest and SVM were efficient approaches with a balanced trade-off between the accuracies and the computational efforts.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第2期294-308,共15页 结构与土木工程前沿(英文版)
基金 support of Shanghai Pinlan Data Technology Co.,Ltd.,and Open Fund of Shanghai Key Laboratory of Engineering Structure Safety,SRIBS(No.2021-KF-06).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部