期刊文献+

A deep neural network based surrogate model for damage identification in full-scale structures with incomplete noisy measurements

原文传递
导出
摘要 The paper introduces a novel approach for detecting structural damage in full-scale structures using surrogate models generated from incomplete modal data and deep neural networks(DNNs).A significant challenge in this field is the limited availability of measurement data for full-scale structures,which is addressed in this paper by generating data sets using a reduced finite element(FE)model constructed by SAP2000 software and the MATLAB programming loop.The surrogate models are trained using response data obtained from the monitored structure through a limited number of measurement devices.The proposed approach involves training a single surrogate model that can quickly predict the location and severity of damage for all potential scenarios.To achieve the most generalized surrogate model,the study explores different types of layers and hyperparameters of the training algorithm and employs state-of-the-art techniques to avoid overfitting and to accelerate the training process.The approach’s effectiveness,efficiency,and applicability are demonstrated by two numerical examples.The study also verifies the robustness of the proposed approach on data sets with sparse and noisy measured data.Overall,the proposed approach is a promising alternative to traditional approaches that rely on FE model updating and optimization algorithms,which can be computationally intensive.This approach also shows potential for broader applications in structural damage detection.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第3期393-410,共18页 结构与土木工程前沿(英文版)
基金 This study was supported by Bualuang ASEAN Chair Professor Fund.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部