期刊文献+

基于随机牛顿算法的离散系统自适应参数估计

Adaptivee parameterr estimation of discrete-timeesystemss based on stochastic Newton algorithm
原文传递
导出
摘要 针对一类离散系统,提出一种基于随机牛顿算法的自适应参数估计新框架,相较于已有的参数估计算法,所提出方法仅要求系统满足有限激励条件,而非传统的持续激励条件.所提出算法的核心思想在于通过对原始代价函数的修正,在使用当前时刻误差信息的基础上融入历史误差信息,进而通过对历史信息和历史激励的复用使得持续激励条件转化为有限激励条件;然后,为了解决传统算法收敛速度慢的问题并避免潜在的病态问题,采用随机牛顿算法推导出参数自适应律,并引入含有历史信息的海森矩阵作为时变学习增益,保证参数估计误差指数收敛;最后,基于李雅普诺夫稳定性理论给出不同激励条件下所提出算法的收敛性结论和证明,并通过对比仿真验证所提出算法的有效性和优越性. This paper proposes a new framework for adaptive parameter estimation for discrete-time systems based on the stochastic Newton algorithm.Different to the classical parameter estimation algorithms,the convergence of the estimation error herein only requires the finite excitation(FE)condition rather than the persistent excitation(PE)condition.The main merit of the algorithm is that the original cost function is modified,where the past error information is used together with the current error information to construct the random gradient vector,so that reusing the historical information can help to relax the PE condition to the FE condition.Furthermore,to solve the problem of slow convergence of the stochastic steepest descent algorithm and avoid the potential ill-conditioned problem,the estimated inverse of the Hessian matrix is constructed as the learning gain and the stochastic Newton algorithm is used to derive the adaptive laws with its exponential convergence.Finally,the convergence of the proposed parameter estimation algorithm under different excitation conditions is evaluated via the Lyapunov theory.The effectiveness and superiority of the proposed algorithms are verified by comparative simulations.
作者 陈思宇 那靖 黄英博 CHEN Si-yu;NA Jing;HUANG Ying-bo(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China;Yunnan International Joint Laboratory of Intelligent Control and Application of Advanced Equipment,Kunming University of Science and Technology,Kunming 650500,China)
出处 《控制与决策》 EI CSCD 北大核心 2024年第6期1959-1966,共8页 Control and Decision
基金 国家自然科学基金项目(62273169,61922037,62003153) 云南省基础研究计划项目(202001AV070001,202201AW070005,202101AU070162)。
关键词 离散系统 自适应参数估计 随机牛顿算法 递推最小二乘 有限激励 代价函数 discrete-time systems adaptive parameter estimation stochastic Newton method recursive least squares finite excitation costfunction
  • 相关文献

参考文献4

二级参考文献46

  • 1韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:409
  • 2韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88. 被引量:420
  • 3韩京清.非线性状态误差反馈控制律──NLSEF[J].控制与决策,1995,10(3):221-225. 被引量:179
  • 4YAO B, A1-MAJED M, TOMIZUKA M. High performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments[J].IEEE Transactions on Mechatronics, 1997, 2(2): 63 - 76.
  • 5YAO B, TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica, 1997, 33(5): 893 - 900.
  • 6YAO B, LI X. Adaptive robust motion control of linear motors for precision manufacturing[J]. Mechatronics, 2002, 12(4): 595 - 616.
  • 7LI X, YAO B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments[J]. IEEE Transactions on Mechatronics, 2001, 6(4): 444 - 452.
  • 8LI X, YAO B. Output feedback adaptive robust precision motion control of linear motors[J]. Automatica, 2001, 37(7): 1029 - 1039.
  • 9YUN H, YAO B. A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments[J]. Autornatica, 2007, 43(10): 1840 - 1848.
  • 10ARMSTRONG B, DUPONT E A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083 - 1138.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部