摘要
设G为连通单连通s阶实幂零李群,且其上有左不变可积近复结构J,T为李群G的最大秩的格;考虑紧致齐性空间G/T上是否有幂零复结构;运用归纳法证明了复结构J可诱导出紧致齐性空间G/T的可积复结构J且是幂零的.
Given a connected simply-connected s-step real nilpotent Lie group G with a left invariant integrable almost complex structure J and a lattice T of maximal rank of the Lie group G,the existence of a nilpotent complex structure on the compact homogeneous space G/T is considered.It is shown in this paper,through the use of inductive methods,that the complex structure J can induce an integrable complex structure J~on the compact homogeneous space G/T,and that J is nilpotent.
作者
杜材煜
王瑜
DU Cai-yu;WANG Yu(School of Mathematics and Statistics,Sichuan University of Science and Engineering,Zigong 643000,China)
出处
《兰州理工大学学报》
CAS
北大核心
2024年第3期167-172,共6页
Journal of Lanzhou University of Technology
基金
四川轻化工大学人才引进项目(2020RC26)的资助
关键词
连通单连通幂零李群
左不变可积近复结构
幂零复结构
紧致齐性空间
connected simply-connected nilpotent Lie group
left invariant integrable almost complex stru-cture
nilpotent complex structure
compact homogenous space