摘要
为了使传统流水车间的调度模型更灵活和更智能化以适应不同生产环境,课题组提出了基于深度学习的分布式流水车间调度方法。通过学习和分析分布式车间系统中的大量数据,利用策略梯度方法在多次迭代优化后使目标得到近似最优解,获取了更智能、适应性更强的生产计划和调度策略;并通过实验和仿真进行验证。结果表明该方法能提高生产效率和资源利用率,并具有成本控制方面的潜力。该研究为制造业的分布式生产环境提供了一种先进的调度策略,为车间管理者提供更准确、更智能的决策参考。
In order to make the traditional flow shop scheduling model more flexible and intelligent to adapt to different production environments,scheduling strategy of distributed flow shop based on deep learning was proposed.By learning and analyzing a large amount of data in the distributed shop floor system,the strategy gradient method was used to obtain the approximate optimal solution after several iterations of optimization,and a more intelligent and adaptable production planning and scheduling strategy was obtained.It was verified by experiments and simulation.The results show that this method can improve production efficiency and resource utilization,and has potential in cost control.The research provides an advanced scheduling strategy for distributed production environment of manufactur industry,and provides more accurate and intelligent decision reference for shop floor managers.
作者
陈俊贤
李仁旺
CHEN Junxian;LI Renwang(School of Mechanical Engineering,Zhejiang University of Science and Technology,Hangzhou 310018,China)
出处
《轻工机械》
CAS
2024年第3期100-107,共8页
Light Industry Machinery
基金
浙江省2023年度“尖兵”“领雁”研发攻关计划(2022C01SA111123)
国家自然科学基金资助项目(51475434)。
关键词
生产调度
分布式流水车间
深度学习
调度策略
策略梯度法
production scheduling
distributed flow shop
deep learning
scheduling strategy
strategy gradient method