期刊文献+

Corrosion behavior of Gd_(2)Zr_(2)O_(7)thermal barrier coatings under Fe-containing environmental sediment attack

原文传递
导出
摘要 Environmental sediments mainly consisting of CaO–MgO–Al_(2)O_(3)–SiO_(2)(CMAS)corrosion are a serious threat to thermal barrier coatings(TBCs),in which Fe element is usually ignored.Gd_(2)Zr_(2)O_(7)TBCs are famous for their excellent CMAS resistance.In this study,the characteristics of Fe-containing environmental sediments(CMAS-Fe)and their corrosiveness to Gd_(2)Zr_(2)O_(7)coatings were investigated.Four types of CMAS-Fe glass with different Fe contents were fabricated.Their melting points were measured to be 1322–1344℃,and the high-temperature viscosity showed a decreasing trend with increasing Fe contents.The corrosion behavior of four types of CMAS-Fe to Gd_(2)Zr_(2)O_(7)coatings at 1350℃was investigated.At the initial corrosion stage(0.1 h),anorthite was precipitated in CMAS-Fe with a high Ca:Si ratio,while Fe-garnet was formed in the melt with the highest Fe content.Prolonging the corrosion time resulted in the formation of a reaction layer,which exhibited an interpenetrating network composed of Gd-oxyapatite,ZrO_(2),and residual CMAS-Fe.Some spinel was precipitated within the reaction layer.After 1 h or even longer time,the reaction layers tended to be stable and compact,which had comparable hardness and fracture toughness to those of Gd_(2)Zr_(2)O_(7)coatings.Under the cyclic CMAS-Fe attack,the residual CMAS-Fe in the interpenetrating network provided a pathway for the redeposited CMAS-Fe infiltration,resulting in the continuous growth of the reaction layer.As a result,the Gd_(2)Zr_(2)O_(7)coatings had a large consumption in the thickness,degrading the coating performance.Therefore,the Gd_(2)Zr_(2)O_(7)coatings exhibit unsatisfactory corrosion resistance to CMAS-Fe attack.
出处 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第4期447-462,共16页 先进陶瓷(英文)
基金 the National Natural Science Foundation of China(Grant No.52272070) National Science and Technology Major Project(Grant No.J2022-VI-0009-0040).
  • 相关文献

参考文献7

二级参考文献36

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部