期刊文献+

具有外力的两相流体模型在周期域上的时间周期解

Time periodic solution to the two-phase fluid model with an external force in a periodic domain
下载PDF
导出
摘要 考虑两相流体模型的时间周期解问题,该系统由可压缩的等温Euler方程和可压缩的等熵Navier-Stokes方程通过阻力项耦合而成的.该模型最先是从具有强局部对准力的Vlasov-Fokker-Planck/可压缩Navier-Stokes模型中取流体动力学极限推导得出的.基于正则化逼近和拓扑度理论,在小时间周期外力作用下,在周期域中得到了时间周期解的存在性.此外,通过能量估计,证明了时间周期解的唯一性. The time periodic solution to a two-phase fluid system is considered,which is consisted of the compressible isothermal Euler equations coupled with the compressible isentropic Navier-Stokes equations through a drag forcing term.This model was first derived by taking the hydrodynamic limit from the Vlasov-Fokker-Planck/isentropic Navier-Stokes equations with strong local alignment forces.Based on regularized approximation and the topological degree theory,we obtain the existence of time periodic solutions under some smallness and structure assumptions imposed on the time periodic force in the periodic domain.Moreover,by energy methods,The uniqueness of the time periodic solution is proved.
作者 周莹颜 郭闪闪 ZHOU Yingyan;GUO Shanshan(School of Mathematical Science,Chongqing Normal University,Chongqing 401331,China)
出处 《内江师范学院学报》 CAS 2024年第6期39-46,共8页 Journal of Neijiang Normal University
基金 国家自然科学基金项目(12001074) 重庆市教委科学技术研究项目(KJQN202000536) 重庆市科学技术局科学研究项目(cstc2020jcyj-msxmX0606)。
关键词 时间周期解 EULER方程 NAVIER-STOKES方程 拓扑度理论 能量估计 time periodic solution Euler equations Navier-Stokes equations topological degree energy method
  • 相关文献

参考文献3

二级参考文献19

  • 1Serrin J. A note on the existence of periodic solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1959, 3:120-122.
  • 2Yudovich V T. Periodic motions of a viscous incompressible fluid. Soviet Math, 1960, 1:1214-1217.
  • 3Prodi G. Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale. Rend Sem Mat Univ Padova, 1960, 30:1-15.
  • 4Kaniel S, Shinbrot M. A Reproductive Property of the Navier-Stokes Equations. Arch Rational Mech Anal, 1967, 24:265-288.
  • 5Farwig R, Okabe T. Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary con- ditions. Ann Univ Ferrara, 2010, 56:249-281.
  • 6Maremonti P. Existence and stability of time periodic solution of the Navier-Stokes equations in the whole space. Nonlinearity, 1991, 4:503-529.
  • 7Maremonti P. Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space. Rich Mat, 1991, 40:81-135.
  • 8Kozono H, Nakao M. Periodic solutions of the Navier-Stokes equations in unbounded domains. Tohoku Math J, 1996, 48:33-50.
  • 9Valli A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann Scuola Norm Sup Pisa C1 Sci, 1983, 10(4): 607-647.
  • 10Matsumura A, Nishida T. Periodic solutions of a viscous gas equation. Recent topics in nonlinear PDE IV (Kyoto, 1988). Lecture Notes in Num Appl Anal, 1989, 10:49-82.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部