期刊文献+

g-C3N4/ZnO复合光催化剂降解污染物的研究进展

Research Progress on g-C 3N 4/ZnO Composite Photocatalysts for Pollutant Degradation
下载PDF
导出
摘要 ZnO具有光催化活性强、稳定性高等优点,然而,ZnO禁带宽度大,只能吸收紫外光,太阳能利用率低;且其光生电子易与空穴复合,量子效率低。g-C3N4是一种窄带隙半导体,与ZnO复合形成异质结,不仅可以提高太阳光利用率,而且能加快载流子转移,提高光催化性能。通过文献研究综述了g-C3N4/ZnO复合光催化剂的四种复合形式,以及g-C3N4、ZnO与其他物质复合而成的三元、四元复合材料,并对g-C3N4/ZnO复合光催化剂的未来发展方向进行了展望。 ZnO has the advantages of strong photocatalytic activity and high thermal stability.However,because of its large band gap,ZnO can only absorb ultraviolet light,and its solar energy utilization rate is low;And its photo generated electrons are easy to recombine with holes,resulting in low quantum efficiency.g-C 3N 4 is a narrow band gap semiconductor that combines with ZnO to form a heterojunction,which not only improves solar light utilization but also accelerates carrier transfer and improves photocatalytic performance.This article mainly reviews the four composite forms of g-C 3N 4/ZnO composite photocatalysts,as well as the ternary and quaternary composite materials composed of g-C 3N 4/ZnO with other substances,and prospects the future development direction of g-C 3N 4/ZnO composite photocatalysts.
作者 赵一民 彭敬 吕玉莹 陈款 段成杰 卜俊方 郑兴芳 Zhao Yimin;Peng Jing;Lyu Yuying;Chen Kuan;Duan Chengjie;Bu Junfang;Zheng Xingfang(College of Chemistry and Chemical Engineering,Linyi University,Linyi 276000,China)
出处 《云南化工》 CAS 2024年第6期22-26,共5页 Yunnan Chemical Technology
基金 临沂大学大学生创新创业训练计划项目(X202310452484) 临沂大学教改项目(JG2022M32)。
关键词 g-C3N4/ZnO 光催化剂 降解 复合 研究进展 g-C 3N 4/ZnO Photocatalyst Degradation Composite Research progress
  • 相关文献

参考文献10

二级参考文献107

  • 1邹胡希智,冯霞,王占强,刘博,钟晴,朱荣娇.Cu@ZnO/Ag花簇型三元异质结构纳米复合材料的合成及其光催化性能的研究[J].当代化工,2019,48(10):2249-2253. 被引量:2
  • 2XU T, ZHANG L, CHENG H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Applied Catalysis B: Environmental, 2011, 101 (3-4) : 382-387.
  • 3YANG D, CHEN C, ZHENG Z, et al. Grafting silica species on anatase surface for visible light photocatalytic activity[J]. Energy &. Environmental Science, 2011, 4 (6): 2279-2287.
  • 4QIU v , YAN K, DENG H, et al. Secondary branching and nitrogen doping of ZnO nanotetrapods , Building a highly active network for photo electrochemical water splitting[J]. Nano Letters, 2011, 120): 407-413.
  • 5WANG X, MAEDA K, THOMAS A, et al. A metal?free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8 0): 76-80.
  • 6THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts[J].Journal of Materials Chemistry, 2008, 18(41): 4893-4908.
  • 7LI X H, WANG X, ANTONIETTI M. Solvent-free and metal-free oxidation of toluene using 0, and g-C3 N, with nanopores , Nanostructure boosts the catalytic selectivity[J]. ACS Catalysis, 2012, 2(10): 2082-2086.
  • 8XUJ, WANG v , ZHU Y. Nanoporous graphitic carbon nitride with enhanced photocatalytic performance[J]. Langmuir, 2013, 29(33): 10566-10572.
  • 9TAKANABE K, KAMATA K, WANG X, et al. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine[J]' Physical Chemistry Chemical Physics, 2010, 12(40): 13020-13025.
  • 10ZHANGJ, SUNJ, MAEDA K, et al. Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis[J]. Energy &. Environmental Science, 2011, 4(3): 675-678.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部