期刊文献+

基于YOLOv8改进的轴承表面缺陷检测方法

Improved bearing surface defect detection method based on YOLOv8
下载PDF
导出
摘要 针对深度学习模型在轴承表面缺陷检测过程中漏检率高、模型复杂度高的问题,提出了一种基于YOLOv8的缺陷检测改进算法。在主干网络中引入GSConv轻量化卷积模块,用GSConv模块代替普通卷积,在不影响模型精度的情况下,减少模型的计算量;引入CBAM卷积注意力模块,通过改进网络特征提取技术,提高了检测的准确性。实验结果表明,改进的模型在自建轴承表面缺陷检测数据集上的准确率为92.6%,较原模型准确率88.8%提高了3.8%;在提升准确率的同时,计算量也从8.2 GFLOPs减少到8.0 GFLOPs,证明了改进后的模型对轴承缺陷检测的有效性。 Aiming at the problems of high missing rate and high model complexity of deep learning model in the process of bearing surface defect detection,an improved defect detection algorithm based on YOLOv8 was proposed.Firstly,the GSConv lightweight convolutional module is introduced into the backbone network,and the GSConv module is used to replace the ordinary convolutional module,which reduces the calculation amount of the model without affecting the accuracy of the model.Secondly,CBAM convolutional attention module is introduced to improve the detection accuracy by improving the network feature extraction technology.Experimental results show that the accuracy of the improved model on the self-built bearing surface defect detection dataset is 92.6%,which is 3.8%higher than that of the original model(88.8%).While the accuracy is improved,the computational cost is also reduced from 8.2GFLOPs to 8.0 GFLOPs,which proves the effectiveness of the improved model for the detection of bearing defects.
作者 于明源 周景亮 曾绍锋 易思敏 YU Mingyuan;ZHOU Jingliang;ZENG Shaofeng;YI Simin(School of Mechanical and Automotive Engineering,Fujian University of Technology,Fuzhou 350118,China)
出处 《福建理工大学学报》 CAS 2024年第3期280-285,共6页 JOURNAL OF FUJILAN UNIVERSITY OF TECHNOLOGY
基金 福建省科技计划项目(2022L3014)。
关键词 轴承表面缺陷检测 YOLOv8 注意力机制 深度学习 缺陷检测 bearing surface defect detection YOLOv8 attention mechanisms deep learning defect detection
  • 相关文献

参考文献9

二级参考文献62

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部