摘要
文章首先通过梳理相关文献、调查现实数据从数字经济背景下的电商客户特征、当前价值及潜在价值3个维度,下设16个二级指标,构建新的基于客户价值的电商客户分类指标体系。其次采用问卷调查法收集相关数据,将数据归一化处理后运用BP神经网络算法将客户分为4个类别,并通过仿真测试证明该模型的有效性。最后根据电商客户价值的高低从企业的角度给出客户管理工作的建议。
Firstly,by combing relevant literature and investigating actual data,this paper sets 16 secondary indicators from three dimensions of e-commerce customer characteristics,current value and potential value under the background of digital economy,and builds a new e-commerce customer classification index system based on customer value.Secondly,the questionnaire survey method is used to collect the relevant data,and the BP neural network algorithm is used to classify the customers into four categories after the data is normalized.The effectiveness of the model is proved by simulation test.Finally,according to the value of e-commerce customers from the perspective of enterprises,it gives customer management suggestions.
作者
江丽桃
曾晶
JIANG Litao;ZENG Jing(Jiangxi University of Technology,Nanchang 330098,China)
出处
《商业观察》
2024年第17期93-95,108,共4页
BUSINESS OBSERVATION
关键词
数字经济
客户价值
客户分类
BP神经网络
digital economy
customer value
customer classification
BP neural network