期刊文献+

基于联邦学习的轴承故障检测与诊断

Bearing Fault Detection and Diagnosis Based on Federated Learning
下载PDF
导出
摘要 首先通过研究轴承故障的理论基础,介绍传统的振动信号分析方法,总结轴承故障算法缺陷,在此基础上进行卷积神经网络(CNN)的学习以用于模型训练、联邦学习;然后通过FedAvg算法将服务机接收的各客户端模型聚合,得到全局模型参数来检测轴承故障;最后进行验证,实现基于联邦学习的轴承故障检测。经大量实验论证,该算法准确有效。 Firstly,by studying the theoretical basis of bearing fault,the traditional vibration signal analysis method is introduced,and the defects of bearing fault algorithm are summarized.On this basis,convolutional neural network(CNN)is studied for model training and federated learning.Then,the FedAvg algorithm is used to aggregate the client models received by the server to obtain the global model parameters for bearing fault detection.Finally,it is verified that the bearing fault detection based on Federated learning is realized.A large number of experiments show that the algorithm is accurate and effective.
作者 齐枫 QI Feng(China Steel Tendering Co.,Ltd.,Beijing 100080,China)
出处 《自动化应用》 2024年第11期52-54,57,共4页 Automation Application
关键词 轴承故障 联邦学习 卷积神经网络 bearing fault federated learning CNN
  • 相关文献

参考文献2

二级参考文献21

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform [ J ]. Mechanical Systems and Signal Processing, 2003, 17(4) : 787 -804.
  • 3Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform[ J]. Mechanical Systems and Signal Processing, 2002, 16(2 -3) : 447 -457.
  • 4Classen T, Mecklenbrauker W. The aliasing problem in discrete-time Wigner distribution[ J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31 (5) : 1067 - 1072.
  • 5Lee J H, Kim J, Kim H J. Development of enhanced Wigner- Ville distribution function [ J ]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367 - 398.
  • 6Cohen L. Time-frequency distribution-a review [ A ]. Proceedings of the IEEE, 1989, 77(7) : 941 -981.
  • 7Mallat S. A theory for multi-resolution decomposition, the wavelet representation [ J]. IEEE Trans. P. A. M. I. , 1989, 11(7) :674 -689.
  • 8Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998, 454:903-995.
  • 9Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31:417 -457.
  • 10Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify nearfault ground-motion characteristics and structural response [J]. Bulletin of the Seismological Society of American, 2001,91(5) : 1339 - 1357.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部