期刊文献+

基于关节点检测的引体向上评测系统

Pull-Up Evaluation System Based on Joint Point Detection
下载PDF
导出
摘要 传统的引体向上测试主要通过裁判员进行人工测量计数,依赖裁判员的专业素质和业务能力,主观性较强且评判标准不统一,测试人员较多时会加大裁判员的工作负担,影响测试效率。针对上述问题,将物联网技术和3D体感技术应用于引体向上评测系统的设计,采用奥比中光摄像机获得人体实时骨骼图像数据流,通过分析引体向上的状态机,设计多个状态机之间的转换匹配算法,实现对引体向上的运动识别。系统以微软基础类(Microsoft Foundation Classes,MFC)为编程框架开发了上位机,综合引体向上识别和人脸识别功能,并使用网站开发技术将测试人员的个人信息和运动数据显示在Web端。经过多组实验测试和数据分析,系统对引体向上的识别率可以达到98%,能够满足体能训练和运动考核的引体向上测量计数任务需求。 The traditional pull-up test is mainly measured and counted manually by the referee,this method depends on the professional quality and professional ability of the referee,the subjectivity is strong and the evaluation standard is not unified,when there are more testers,it will increase the work burden of the referee and affect the testing efficiency.In order to solve the above problems,the 3D somatosensory technology is applied to the design of the pull-up evaluation system,and the real-time human bone image data stream is obtained by using the Orbbec camera.By analyzing the pull-up state machine,a template matching algorithm for the conversion between multiple state machines is designed to realize the motion recognition of pull-up.The system uses Microsoft Foundation Classes(MFC) as the framework to develop the host computer,integrates pull-up recognition and face recognition functions,and uses website development technology to display the tester's personal information and motion data on the web side.After several groups of experimental tests and data analysis,the recognition rate of the system for pull-up can reach 98%,which can meet the human body pull-up measurement and counting task of physical fitness training and exercise assessment.
作者 张凯 孙玉国 ZHANG Kai;SUN Yuguo(School of Optoelectronic Information and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《智能物联技术》 2024年第1期58-64,共7页 Technology of Io T& AI
关键词 物联网 人脸识别 姿态识别 有限状态机 Internet of Things face recognition attitude recognition finite state machine
  • 相关文献

参考文献4

二级参考文献33

  • 1李向新,田岚,郑悦,李光林.一种下肢运动意图识别算法性能实时测评系统[J].仪器仪表学报,2020(5):99-107. 被引量:4
  • 2余涛.Kinect应用开发实战:用最自然的方式与机器对话[M].北京:机械工业出版社,2012.
  • 3Wang J, Xu Z J. STV-based video feature processing for action recognition [J].Signal Processing, 2013, 93(8) : 2151- 2168.
  • 4van den Bergh M, Carton D, de Nijs R, et al. Real-time 3D hand gesture interaction with a robot for understanding directions from humans [C] //Proceedings of the 20th IEEE International Symposium on Robot and Human Interactive Communication. Los Alamitos: IEEE Computer Society Press, 2011:357-362.
  • 5Zhang Q S, Song X, Shao X W, etal. Unsupervised skeleton extraction and motion capture from 3D deformable matching[J].Neurocomputing, 2013, 100:170-182.
  • 6Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images [J]. Communications of the ACM, 2013, 56(1): 116-124.
  • 7El-laithy R A, Huang J D, Yeh M. Study on the use of Microsoft Kinect for robotics applications [C]//Proceedings of Position Location and Navigation Symposium. Los Alamitos: IEEE Computer Society Press, 2012:1280-1288.
  • 8Oikonomidis I, Kyriazis N, Argyros A. Efficient model- based 3D tracking of hand articulations using Kinect [C] // Proceedings of the 22nd British Machine Vision Conference. British: BMVA Press, 2011:1-11.
  • 9沈世宏,李蔚清.基于Kinect的体感手势识别系统的研究[C]//第8届和谐人机环境联合学术会议论文集CHCI.北京:清华大学出版社,2012:55-62.
  • 10Sohani F, Eskandari F, Golestan S. Developing a gesture- based game for deaf/mute people using Microsoft Kinect [C]// Proceedings of the 6th International Conference on Complex, Intelligent and Software Intensive Systems. Los Alamitos: IEEE Computer Society Press, 2012:491-495.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部