期刊文献+

融合偏好传播的多任务推荐模型研究

Research on Multi-task Recommendation Model Fused with Preference Propagation
下载PDF
导出
摘要 针对知识图谱可以有效地从多源异构数据中还原出实体的三元组关系,却不利于推荐任务且采用单任务学习又很难挖掘数据潜在关联的问题,提出一种融合偏好传播的多任务推荐模型(MAPKR)。首先,利用涟漪传播从知识图谱中提取用户的偏好特征集;其次,依据相似近邻结构实现潜在特征共享,经交叉压缩单元提取项目和实体的高阶特征表示;最后,以多任务学习交替训练推荐模块和知识图谱嵌入模块,将提取的特征向量经归一化内积操作后进行预测、推荐。在3个公开数据集上进行实验并与5个基线模型进行比较。与MKR和RippleNet相比,在MovieLens-1M数据集上,AUC和ACC分别提高了0.68%、0.31%和0.77%、0.54%;在Book-Crossing上,AUC和ACC分别提高了3.48%、2.66%和4.51%、7.21%;在Last.FM上,AUC和ACC分别提高了3.44%、6.25%和2.70%、2.62%。实验结果表明,提出的模型与MKR、RippleNet等其他基线模型相比推荐性能良好。 To address the problem that the knowledge graph can effectively reduce the triadic relationships of entities from multi-source het-erogeneous data,but is not conducive to recommendation tasks and it is difficult to explore the potential association relationships of data using single-task learning,a multi-task recommendation model with fused preference propagation(MAPKR)is proposed.Firstly,the user's prefer-ence feature set is extracted from the knowledge graph using ripple propagation;secondly,the potential features are shared based on the simi-lar nearest neighbor structure,and the higher-order feature representations of items and entities are extracted by cross-compression units;fi-nally,the recommendation module and the knowledge graph embedding module are trained alternately with multi-task learning,and the ex-tracted feature vectors are predicted and recommended after normalized inner product operation.Experiments are conducted on three publicly available datasets and compared with five baseline models.Compared with MKR and Ripple Net,the AUC and ACC are improved by 0.68%,0.31%and 0.77%,0.54%on MovieLens-1M dataset;3.48%,2.66%and 4.51%,7.21%on Book-Crossing,respectively;on Last.FM,AUC and ACC improved by 3.44%,6.25%and 2.70%,2.62%,respectively.The experimental results show that the proposed model has good recommendtion performance compared with other baseline models such as MKR and RippleNet.
作者 杨本臣 叶洪宇 孟祥福 YANG Benchen;YE Hongyu;MENG Xiangfu(School of Software,Liaoning Technical University;School of Electronic&Information Engineering,Liaoning Technical Uni-versity,Huludao 125105,China)
出处 《软件导刊》 2024年第6期9-17,共9页 Software Guide
基金 国家自然科学基金面上项目(61772249)。
关键词 推荐系统 深度学习 知识图谱 偏好传播 多任务学习 recommendation system deep learning knowledge graph preference propagation multi-task learning
  • 相关文献

参考文献4

二级参考文献22

  • 1Sun,J.Han,P.Zhao,Z.Yin,H.Cheng,and T.Wu,RankClus:Integrating clustering with ranking for heterogeneous information network analysis,in Proc.2009Int.Conf.Extending Data Base Technology(EDBT’09),Saint-Petersburg,Russia,Mar.2009.
  • 2Sun,B.Norick,J.Han,X.Yan,P.S.Yu,and X.Yu,Integrating meta-path selection with user guided object clustering in heterogeneous information networks,in Proc.of2012ACM SIGKDD Int.Conf.on Knowledge Discovery and Data Mining(KDD’12),Beijing,China,Aug.2012.
  • 3Sun,Y.Yu,and J.Han,Ranking-based clustering of heterogeneous information networks with star network schema,in Proc.2009ACM SIGKDD Int.Conf.Knowledge Discovery and Data Mining(KDD’09),Paris,France,June2009.
  • 4Deng,J.Han,M.R.Lyu,and I.King,Modeling and exploiting heterogeneous bibliographic networks for expertise ranking,in Proceedings of the12th ACM/IEEE-CS Joint Conference on Digital Libraries(JCDL’12),2012,pp.71-80.
  • 5Deng,J.Han,B.Zhao,Y.Yu,and C.X.Lin,Probabilistic topic models with biased propagation on heterogeneous information networks,in Proc.2011ACM SIGKDD Int.Conf.on Knowledge Discovery and Data Mining(KDD’11),San Diego,CA,USA,Aug.2011.
  • 6Sun,J.Han,J.Gao,and Y.Yu,Itopicmodel:Information network-integrated topic modeling,in Proc.2009Int.Conf.Data Mining(ICDM’09),Miami,FL,USA,Dec.2009.
  • 7Ji,J.Han,and M.Danilevsky,Ranking-based classification of heterogeneous information networks,in Proc.2011ACM SIGKDD Int.Conf.on Knowledge Discovery and Data Mining(KDD’11),San Diego,CA,Aug.2011.
  • 8Ji,Y.Sun,M.Danilevsky,J.Han,and J.Gao,Graph regularized transductive classification on heterogeneous information networks,in Proc.2010European Conf.Machine Learning and Principles and Practice of Knowledge Discovery in Databases(ECMLPKDD’10),Barcelona,Spain,Sept.2010.
  • 9Sun,J.Han,X.Yan,P.S.Yu,and T.Wu,PathSim:Meta path-based top-k similarity search in heterogeneousinformation networks,in Proc.2011Int.Conf.Very Large Data Bases(VLDB’11),Seattle,WA,USA,Aug.2011.
  • 10X.Yu,Y.Sun,B.Norick,T.Mao,and J.Han.User guided entity similarity search using meta-path selection in heterogeneous information networks,in Proc.2012Int.Conf.on Information and Knowledge Management(CIKM’12),Maui,Hawaii,USA,Oct.2012.

共引文献465

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部