摘要
该文提出了一种基于深度学习的新型网络电视自动化测试算法优化方案,方案采用卷积神经网络和强化学习等深度学习技术,实现了对UI控件的准确识别和动态测试用例生成,有效解决了系统复杂度高、界面无障碍支持度低等问题。文中介绍了算法的具体实现细节和优化策略,并通过大量实验论证了该算法的有效性和优越性。
The article proposes a new network television automation testing algorithm optimization scheme based on deep learning.This scheme adopts deep learning techniques such as convolutional neural networks and reinforcement learning to achieve accurate recognition of UI controls and dynamic test case generation,effectively solving problems such as high system complexity and low interface accessibility support.The article introduces the specific implementation details and optimization strategies of the algorithm,and demonstrates its effectiveness and superiority through a large number of experiments.
作者
张惠琦
ZHANG Huiqi(Distek(Beijing)Technology Co.,Ltd.,Beijing 100000,China)
出处
《数字通信世界》
2024年第6期40-42,共3页
Digital Communication World
关键词
网络电视
自动化测试
深度学习
卷积神经网络
强化学习
network TV
automated testing
deep learning
convolutional neural networks
reinforcement learning