摘要
基于密度泛函理论的第一性原理方法,研究了Mg-Al-Ca-Si合金中主要强化相Al_(2)Ca、Mg_(2)Ca和Mg_(2)Si的晶体结构稳定性、电子性质、弹性常数及声子性质,计算所得的晶格常数、实验数据与文献值吻合。合金形成热和结合能计算结果表明:Al_(2)Ca具有最强的合金形成能力和稳定性。计算了Al_(2)Ca、Mg_(2)Ca和Mg_(2)Si的体模量、剪切模量、杨氏模量和泊松比。结果表明:3种二元相均为脆性相。通过电子态密度、Muliken电子占据数和金属性计算分析结构稳定性机制,表明共价键强弱顺序依次为Al_(2)Ca、Mg_(2)Si、Mg_(2)Ca;声子性质表明Al_(2)Ca、Mg_(2)Ca和Mg_(2)Si分别在5.65、5.93和6.53 THz附近的晶格振动较强。
Based on the first-principles method of density function theory,the crystal structure stability,electronic properties,elastic constants and phono properties of the main strengthening phase Mg_(2)Si,Al_(2)Ca and Mg_(2)Ca in Mg-Al-Ca-Si alloy were studied.The calculated lattice constants are in good agreement with the experimental data and literature values.The calculation results of alloy forming energy and binding energy show that Al_(2)Ca has the strongest alloy forming ability and stability.The bulk modulus,shear modulus,youngs modulus and poissons ratio of Al_(2)Ca,Mg_(2)Ca and Mg_(2)Si were calculated.The results show that the three binary phases are brittle phases;the structural stability mechanism is analyzed by calculation of electron density of states,Mulliken electron occupation number and metallicity.It shows that the order of covalent bond strength is Al_(2)Ca,Mg_(2)Si and Mg_(2)Ca.The phonon properties show that the lattice vibrations of Al_(2)Ca,Mg_(2)Ca and Mg_(2)Si are strong near 5.65,5.93 and 6.53 THz,respectively.
作者
朱弘伟
侯文卓
夏书乐
李浩楠
仝仲盛
仝仲国
ZHU Hongwei;HOU Wenzhuo;XIA Shule;LI Haonan;TONG Zhongsheng;TONG Zhongguo(School of Physics and Electronic Science,Shanxi Datong University,Datong 037009,China;CITIC Dicastal Co.,Ltd.,Qinhuangdao 066004,China;School of Materials Science and Engineering,Yanshan University,Qinhuangdao 066004,China;Datong GOMG Technology Co.,Ltd.,Datong 037009,China)
出处
《热加工工艺》
北大核心
2024年第10期101-105,共5页
Hot Working Technology
基金
山西省高校科技创新项目(2021L385)
山西大同大学科研专项课题项目(云冈学研究)(2021YGZX34)
山西大同大学教学改革项目(XJG2020231)
山西大同大学博士科研启动项目(2019-B-05)
山西省科研启动项目(606-02010348)。
关键词
镁合金
第一性原理
电子性质
弹性常数
magnesium alloy
first-principles
electronic properties
elastic constant