期刊文献+

2018–2020年广西甘蔗10 m分辨率种植分布数据集

A dataset of the sugarcane planting distribution with the spatial resolution of 10 m in Guangxi from 2018 to 2020
下载PDF
导出
摘要 作物种植分布的提取是作物监测的基础,及时准确地提取出甘蔗种植分布对甘蔗监测及种植结构调整具有重要意义。本文基于Sentinel-1和Sentinel-2数据,采用主被动遥感协同方法和决策树分类方法,开展了广西甘蔗种植分布提取方法研究,并结合多年调查的地面样本数据进行验证,在此基础上提取了2018–2020年广西甘蔗种植分布。该方法利用遥感数据提取得到的2018年广西甘蔗种植分布总体精度达92%,Kappa系数为0.85;2019年广西甘蔗种植分布总体精度达94%,Kappa系数为0.88;2020年广西甘蔗种植分布总体精度达94%,Kappa系数为0.88。本数据集可作为广西甘蔗时空变化分析的基础数据,也可为广西甘蔗生产管理与种植结构优化调整等提供基础数据支撑。 The extraction of sugarcane planting distribution is the basis of crop monitoring.The extraction of timely and accurate sugarcane planting distribution is of great significance for monitoring sugarcane crops and making adjustments to the planting structure.Based on Sentinel-1 and Sentinel-2 data,in this paper,we adopted the active and passive remote sensing collaborative method and decision tree classification method to carry out research on the extraction method of sugarcane planting distribution in Guangxi.Then we verified the data by referring to multi-year survey ground sample data.On this basis,we produced dataset of the sugarcane planting distribution with the spatial resolution of 10 m in Guangxi from 2018 to 2020.The remote sensing extraction-based method yielded an overall accuracy of 92%for sugarcane planting distribution in Guangxi in 2018,with a Kappa coefficient of 0.8.The overall accuracy of sugarcane planting distribution in Guangxi in 2019 is 94%,with a Kappa coefficient 0.88;the overall accuracy of sugarcane planting distribution in Guangxi in 2020 is 94%,with a Kappa coefficient of 0.88.This dataset can be used as the basic data for the analysis of temporal and spatial changes of sugarcane in Guangxi.And it can also provide basic data support for the optimization and adjustment of sugarcane production management and planting structure in Guangxi.
作者 陈森政 叶回春 聂超甲 雒培磊 CHEN Senzheng;YE Huichun;NIE Chaojia;LUO Peilei(School of computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004,P.R.China;Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,P.R.China;China-ASEAN Regional Innovation Center for Big Earth Data,Nanning 530022,P.R.China)
出处 《中国科学数据(中英文网络版)》 CSCD 2024年第2期50-57,共8页 China Scientific Data
基金 广西创新驱动发展专项资金项目(桂科AA20302022) 中国科学院青年创新促进会项目(2021119) 中国科学院空天信息创新研究院“未来之星”项目(2020KTYWLZX08)。
关键词 甘蔗 Sentinel-2数据 主被动遥感协同 决策树分类 广西 sugarcane Sentinel-2 active and passive remote sensing collaboration decision tree classification Guangxi
  • 相关文献

参考文献5

二级参考文献79

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部