摘要
分析了一类广义不确定时滞系统一些具体的鲁棒性能。针对既存在状态滞后,又存在时变参数不确定性的系统,通过构造Lyapunov泛函,根据Lyapunov稳定性理论并结合线性矩阵不等式方法,给出了既能使系统鲁棒稳定又能满足二次型性能指标的条件,并且将该条件转化成等价的线性矩阵不等式可行性问题,还给出了系统最小性能上界的求解方法,最后通过数值例子验证了该条件的可行性。
A detailed analysis of specific robustness properties pertaining to a category of uncertain singular time-delay systems is conducted,particularly focusing on systems characterized by both time delay and time-varying parameter uncertainty.By leveraging the construction of a Lyapunov functional and drawing upon Lyapunov stability theory in conjunction with the linear matrix inequality method,a methodology is presented to confer robust stability upon the system,while concurrently ensuring satisfaction of a quadratic performance index.The established condition is reformulated into an equivalent linear matrix inequality feasibility problem,enabling the determination of the upper bound of the minimum system performance through a structured solving approach.
作者
冀晓霞
JI Xiaoxia(School of Mathematics and Computer Science,Jilin Normal University,Changchun 130000,Jilin,China)
出处
《惠州学院学报》
2024年第3期73-78,共6页
Journal of Huizhou University
关键词
时滞系统
广义不确定性
鲁棒性能
线性矩阵不等式
Schur补引理
Time-delay system
generalized uncertainty
robust performance
linear matrix inequalities
Schur complement lemma